首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The semaphorin receptors neuropilin and plexin were initially identified as antigens for monoclonal antibodies MAb-A5 and MAb-B2, which bind to specific neuropiles and plexiform layers within the Xenopus tadpole nervous systems, several years before the discovery of the first semaphorin. This article provides an overview of how neuropilin and plexin were discovered. In addition, it describes the functions of neuropilin in the signaling of chemorepulsive activities of class 3 semaphorins and roles of neuropilin-mediated semaphorin activities in the directional guidance of the peripheral nervous system (PNS) and integration of the peripheral ganglia.  相似文献   

2.
Summary Neurons displaying FMRFamide(Phe-Met-Arg-Phe-NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.  相似文献   

3.
We determined the cellular localization of an endogenous lectin at various times during the development of a well-characterized region of chick brain, the optic tectum. This lectin is a carbohydrate-binding protein that interacts with lactose and other saccharides, undergoes striking changes in specific activity with development, and has previously been purified by affinity chromatography from extracts of embryonic chick brain and muscle. Cellular localization in the tectum was done by indirect immunofluoresecent staining, using immunoglobulin G derived from an antiserum raised against pure lectin. No lectin was detectable in the optic tectum examined at 5 days of embryonic development. From approximately 7 days of development, neuronal cell bodies and fibers were labeled by the antibody; and extracts of tectum contained hemagglutination activity that could be inhibited by lactose or by the antiserum. Lectin remained present in many tectal neuronal layers after hatching; but in 2-month-old chicks it was sparse or absent in most of the tectum except for prominent labeling of fibers in the stratum album centrale. The initial appearance of lectin in the optic tectum was not dependent on innervation by optic nerve fibers since bilateral enucleation during embryogenesis did not affect it. Lectin was detectable on the surface of embryonic optic tectal neurons dissociated with a buffer containing EDTA.  相似文献   

4.
Using a post-embedding immunogold labeling procedure, we found that monoclonal antibody against A (MAb-A) or B antigen (MAb-B) reacted with nuclear heterochromatin regions, as well as secretory granules, in mucous cells of human cervical glands. Systematic and critical observation of specimens from 24 individuals of different blood groups revealed that the labeling pattern with MAb with strictly dependent on the blood group (A,B, or O) of the donors, i.e., MAb-A reacted with the heterochromatin from blood group A and AB but not with B and O individuals. Labeling with MAb-B was also specific for the heterochromatin from blood group B donors. On the other hand, MAb against H antigen did not react with the heterochromatin from any individuals examined, despite the fact that H antigens were detected by the MAb in secretory granules. Such specific reactions provide evidence that certain types of blood group-related antigens exist in the nuclear heterochromatin in mucous cells of human cervical glands. In contrast to the secretory granules in which ABH antigens were recognized by blood group-specific lectin, heterochromatin regions had little or no affinity for these lectins. Furthermore, the secretory status of individuals affected the staining intensity with MAb in secretory granules but not in the heterochromatin. These results suggest that the blood group substances found in the heterochromatin may have different molecular properties from those in the secretory granules, although both have the same determinant structures of ABH antigens.  相似文献   

5.
The alar plate of the prosencephalon of the quail embryo was heterotopically transplanted into the alar plate of the mesencephalon of the chick embryo at the 7–10 somite stage. Chick and quail cells in chimeric brains were distinguished after Feulgen-Rossenbeck staining and/or immunohistochemical staining with a species specific monoclonal antibody MAb-37F5 which recognized cytoplasmic components of chick brain cells. Neural connections between the transplant and the host were studied by monoclonal antibodies, MAb39-B11, which recognizes a species specific antigen on chick nerve fibers, and MAb-29B8, which reacts to 160 kD neurofilaments of both chick and quail.
When the transplant was completely integrated into the host mesencephalon, the transplant developed a laminar morphology closely resembling that of the optic tectum. Immunohistochemical staining with MAb-39B11 showed that the host optic nerve fibers innervated both the host tectum and the tectum-like transplant. However, optic nerve fibers did not invade transplants that failed to develope a laminar structure characteristic of the tectum. These findings suggest that the prosencephalon has a capacity to differentiate into the optic tectum at the 7–10 somite stage.  相似文献   

6.
The transport of RNA from the ganglion cell bodies within the retina to the contralateral optic tectum has been studied in the chick following intraocular injection of radioactive uridine. By tracing the appearance of labeled RNA at the proximal end of the optic nerve as it leaves the eyeball and comparing this to the time of arrival of RNA within the optic tectum, the migratory velocity of axonal RNA has been calculated to be around 12 mm per day. The continuation of RNA migration to the optic tectum in the presence of intracerebrally injected actinomycin-D but not in the presence of the intraocularly injected drug, suggests a retinal site of synthesis of the excess RNA found in the tectum innervated by the injected eye. A study of the rate of disppearance of radioactivity of the transported RNA in the optic lobes, suggested that this RNA turns over more rapidly than the bulk of tectal RNA. The destination of migrating RNA within the optic tectum has been autoradiographically examined. Most radioactive RNA is found in the outer tectal layers in which are found the afferent fibers of the optic tract and most of their synaptic terminations. Label is not confined to these areas however but is also present in the deeper layers of the optic tectum which are not known to contain any primary synapses of the axons from retinal ganglion cells.  相似文献   

7.
Cysteine sulfinate (CSA) carboxylyase, the enzyme which synthesizes taurine through hypotaurine, shows a higher activity in the inner plexiform and nuclear layer of adult chick retina compared to the outer plexiform and nuclear layers whereas the outer segments of photoreceptors do not show any activity of this enzyme. These observations suggest an endogenous synthesis of taurine preferentially in certain layers of retina. Therefore, taurine fulfills one more criteria which is required by a substance to be accepted as a neurotransmitter in an organ. Studies on the distribution of CSA-carboxylyase in the visual pathway and other brain areas show a very high activity of this enzyme in optic tectum followed by cerebral cortex, cerebellum, retina, lateral geniculate body and optic nerve, taken with chiasma and tract in decreasing order. On the other hand, analysis of the free amino acid pool reveals a very high content of taurine in retina as compared to optic tectum. Cysteine sulfinate carboxylyase activity and the content of taurine therefore do not seem to bear a good correlation and other mechanisms of release, uptake and degradation might be involved in regulating the taurine content in these tissues.  相似文献   

8.
The optic tectum in birds receives visual information from the contralateral retina. This information is passed through to other brain areas via the deep layers of the optic tectum. In the present study the crossed tectobulbar pathway is described in detail. This pathway forms the connection between the optic tectum and the premotor area of craniocervical muscles in the contralateral paramedian reticular formation. It originates predominantly from neurons in the ventromedial part of stratum griseum centrale and to a lesser extent from stratum album centrale. The fibers leave the tectum as a horizontal fiber bundle, and cross the midline through the caudal radix oculomotorius and rostral nucleus oculomotorius. On the contralateral side fibers turn to ventral and descend caudally in the contralateral paramedian reticular formation to the level of the obex. Labeled terminals are found in the ipsilateral medial mesencephalic reticular formation lateral to the radix and motor nucleus of the oculomotor nerve, and in the contralateral paramedian reticular formation, along the descending tract. Neurons in the medial mesencephalic reticular formation in turn project to the paramedian reticular formation. Through the crossed tectobulbar pathway visual information can influence the activity of craniocervical muscles via reticular premotor neurons.  相似文献   

9.
墨龙与红鲫的视网膜和视盖解剖结构比较   总被引:1,自引:0,他引:1  
墨龙是一种由红鲫进化来的龙睛种金鱼(Carassius auratus)。随机取体长10—12 cm, 重约35 g的墨龙和红鲫各4尾, 解剖取出整个眼球及脑, 并常规石蜡切片, HE染色。在光学显微镜下观察墨龙和红鲫的视网膜、视盖系统的显微结构变化并比较各层厚度, 发现与红鲫相比, 墨龙视网膜的总厚度下降29.9%, 其中外网状层厚度增加2.5%、内网状层厚度增加11.8%; 而内核层厚度下降21.6%、外核层厚度降低35.6%, 神经节细胞层、杆锥层也变薄, 且后两者分层不规则; 墨龙视盖壁整体厚度增加28.9%, 其中除围脑室层厚度减少22.6%外, 中央纤维层厚度增加12.8%, 中央细胞层厚度增加30.6%, 表面纤维层厚度增加21.9%, 且纤维远较红鲫密集, 视神经层厚度增加91.7%, 边缘层厚度增加35.6%。结果表明长期的人工选择不但改变了墨龙的外形, 而且使其中枢神经组织结构也发生了较大变化, 并推测墨龙的眼球直径及视网膜面积较大, 从而导致自视网膜传入视盖的纤维增多, 是视网膜和视盖中的传递神经冲动的神经元、神经纤维所在层段增厚的主要原因; 同时墨龙视网膜中色素上皮层向杆锥层交错对插, 富含神经元的视网膜外核层、内核层以及视盖中的围脑室层厚度也降低, 可以减少因视网膜面积大而造成的强光伤害; 此外由于墨龙的围脑室层厚度降低, 导致其游动及平衡能力较红鲫差。  相似文献   

10.
With the recent progress in transplantation of neuronal tissues, cellular markers are needed to distinguish the grafted cells from the host. To generate monoclonal antibodies (MAb) recognizing species-specific antigens in the chick nervous system, we immunized mice with chick optic nerves and obtained 2 MAb which bind to chick but not to quail neural tissues. MAb-39B11 recognizes the cell surface antigen on the nerve fibers. MAb-37F5 recognizes the cytoplasmic components in several cell types, including ependymal cells and some large neurons. The utility of these MAb as markers for chick cells in the chick-quail chimeric brain and their advantages over conventional markers are discussed.  相似文献   

11.
Summary The technique of cobalt sulfide precipitation combined with Timm's sulfide-silver method for intensification of heavy metals was used to delineate the retino-hypothalamic projection of the rat. Freshly isolated rat brains were dissected and a solution of cobaltous chloride was applied to one of the cut optic nerves. Sixteen hours later, after cobalt ions had passed into the brain along the entire length of the optic fibers, the preparation was treated with ammonium sulfide to precipitate the cobalt as cobalt sulfide. In thick light microscopic sections, cobalt-filled axons were visualized as black fibers against a light gold background. Such fibers were observed to leave the posterior medial portion of the optic chiasm and, after arching dorsally, to project into the posterior fifth of the suprachiasmatic nucleus (SCN), as well as into the rostral part of the arcuate nucleus. Neither bifurcation of these axons nor looping of the axons back to the chiasm was seen. Most fibers projected to the SCN contralateral to the filled nerve, but the projection represented less than 0.1 % of the total number of fibers in one optic nerve. These observations are considered to be graphic evidence of a retino-hypothalamic projection. The interpretation of the cobalt method is discussed, as are the functions of the connections that have been observed.This work was supported by the Nuffield FoundationWe are grateful to Mr. Clifford Jeal of the Department of Pathology for excellent advice on photomicrography  相似文献   

12.
Summary The architecture of normal and regenerating nerve fiber bundles in the optic nerve of the goldfish and the Crucian carp was compared to that of the axonal fascicles in the optic tectum of these teleost species with the use of ultrathin sections and freeze-fracture replicas. The fascicles in the optic nerve are clearly demarcated by astrocytic processes, in contrast to the fascicles in the tectum. No astrocytes could be identified in the tectum; in this region processes of astrocytes or of radial glial cells do not form channeling structures reminiscent of those in the optic nerve. Furthermore, tectal blood vessels lack complete investments of glial processes. It can be assumed that at least in lower vertebrates a framework of astrocytic processes might be important for growth of optic fibers over large distances, i.e., from the eye to the tectum, but may be dispensable in the target region itself.  相似文献   

13.
After an unilateral destruction of the suprachiasmatic nucleus and with the use of several silver impregnation techniques, degenerating centrifugal fibers were found in both optic nerves. Centrifugal fibers to the retina originate from three different regions of the nucleus and their position in the chiasma are different. In large majority the degenerating fibers were located at the periphery of the optic nerve and were more frequent on the contralateral than on the ipsilateral side to the destroyed suprachiasmatic nucleus. The possibility that our experimental procedure demonstrates the existence of fibers originating not only in the suprachiasmatic nucleus but also in other structures whose efferent fibers pass at this level, is discussed.  相似文献   

14.
S Kr?ger  J Walter 《Neuron》1991,6(2):291-303
During embryonic development of the avian optic tectum, retinal and tectobulbar axons form an orthogonal array of nerve processes. Growing axons of both tracts are transiently very closely apposed to each other. Despite this spatial proximity, axons from the two pathways do not intermix, but instead restrict their growth to defined areas, thus forming two separate plexiform layers, the stratum opticum and the stratum album centrale. In this study we present experimental evidence indicating that the following three mechanisms might play a role in segregating both axonal populations: Retinal and tectobulbar axons differ in their ability to use the extracellular matrix protein laminin as a substrate for axonal elongation; the environment in the optic tectum is generally permissive for retinal axons, but is specifically nonpermissive for tectobulbar axons, resulting in a strong fasciculation of the latter; and growth cones of temporal retinal axons are reversibly inhibited in their motility by direct contact with the tectobulbar axon's membrane.  相似文献   

15.
Summary The optic tectum of Calamoichthys calabaricus (Polypteriformes) shows a relatively complex vertical stratification, with six main layers and a varied neuronal typology. In particular, pyriform neurons in the well developed stratum griseum periventriculare and some multipolar neurons in the stratum griseum profundum represent the efferent elements of the tectum, while the optic and lemniscal inputs to the tectum converge in the plexiform sublayers of the stratum fibrosum et griseum superficiale. In the circuitry of the tectum some modulation is achieved by some of the polymorphic cells of the stratum griseum internum and by the horizontal cells of the outer layers. Notwithstanding some differences with respect to the teleost optic lobe (i.e., the absence of a torus longitudinalis; the lack of a stratum fibrosum marginale; the modest size of the stratum fibrosum profundum; the paucity of neurons in the stratum fibrosum et griseum superficiale; and the ill-defined separation of the layers of the afferent and efferent fibers), the optic tectum of Calamoichthys resembles the mesotectal type characteristic of teleosts, anurans and reptiles. It exhibits higher degree of organization than the optic tectum of the Chondrostei.  相似文献   

16.
Summary Immunocytochemical studies were conducted on goldfish to determine whether a retinal efferent fiber system, immunoreactive to the tetrapeptide Phe-Met-Arg-Phe-NH2 (FMRFamide), might contain instead a substance similar to one of the 36-amino acid pancreatic polypeptides, the C-terminus of which is similar to FMRFamide.Our results demonstrate the presence of two separate peptidergic systems, one containing FMRFamide-like, and the other pancreatic polypeptide-like peptides. Antisera to FMRFamide reveal the efferent fibers, whose axons exit the optic nerve and terminate in layer 1 of the inner plexiform layer, as previously described. Antisera to porcine neuropeptide Y, and to avian and bovine pancreatic polypeptides label a sparse population of putative amacrine cell bodies and a dense fiber plexus in layers 1, 3, and 5 of the inner plexiform layer. Based on intensity of staining, this amacrine cell peptide appears to be most similar to neuropeptide-Y.Radioimmunoassay and immunocytochemical staining of retinas in which the efferent fiber peptide was depleted by optic nerve crush confirm in large part the observation that the two peptide systems are distinct. However, there is some cross-recognition of the FMRFamide-like tissue antigen by pancreatic polypeptide antibodies.Double-label studies with antisera to tyrosine hydroxylase and neuropeptide-Y indicate that the pancreatic polypeptide antigen is not co-localized with catecholamines.  相似文献   

17.
Carassius RFamide (C-RFa) is a novel peptide found in the brain of the Japanese crucian carp. It has been demonstrated that mRNA of C-RFa is present in the telencephalon, optic tectum, medulla oblongata, and proximal half of the eyeball in abundance. Immunohistochemical methods were employed to elucidate the distribution of the peptide in the brain of the goldfish (Carassius auratus) in detail. C-RFaimmunoreactive perikarya were observed in the olfactory bulb, the area ventralis telencephali pars dorsalis and lateralis, nucleus preopticus, nucleus preopticus periventricularis, nucleus lateralis tuberis pars posterioris, nucleus posterioris periventricularis, nucleus ventromedialis thalami, nucleus posterioris thalami, nucleus anterior tuberis, the oculomotor nucleus, nucleus reticularis superior and inferior, facial lobe, and vagal lobe. C-RFa immunoreactive fibers and nerve endings were present in the olfactory bulb, olfactory tract, area dorsalis telencephali pars centralis and medialis, area ventralis telencephali, midbrain tegmentum, diencephalon, medulla oblongata and pituitary. However, in the optic tectum the immunopositive perikarya and fibers were less abundant. Based on these results, some possible functions of C-RFa in the nervous system were discussed.  相似文献   

18.
The distribution of radioactive RNA and RNA precursors in the goldfish optic tecta following intraocular injection of 3H-uridine has been studied during various stages of optic nerve regeneration. 3H-uridine was injected into the posterior chamber of the right eye 17, 30, or 60 days after both optic nerves were crushed. Five were sacrificed at time intervals ranging from 0.5 to 21 days after injection. One day prior to sacrificing, 14C-proline was also injected into the right eye as a marked of fast axonal protein transport. Seventeen to 23 days after crushing, the approximate time of nerve reconnection, the amount of radioactive RNA appearing in the left optic tectum was increased by more than ten times control values. Approximately 30 days after crushing the nerve, when the reconnected nerve is maturing, RNA values were still elevated, but significantly decreased from the earlier stage. By 60 days after crushing the optic nerve, the amounts of RNA in the left tectum was close to normal. Evidence suggesting that, at least, some of the radioactive RNA in the tectum originated from RNA transported along optic axons rather than from RNA synthesized locally in the tectum was provided by autoradiographic experiments. Autoradiograms of paraffin sections taken from the goldfish optic tecta after the intraocular injection of 3H-uridine showed a distribution of grains in a linear pattern, suggesting a distribution over the incoming fibers during the reconnection stage of regeneration. Electron microsocpic autoradiography of glutaraldehyde fixed epoxy sections confirmed that a significant number of grains (shown to be 3H-RNA) were, in fact, over regenerating optic axons. Intracranial injection of 3H-uridine, during the same stage of regeneration, on the other hand, resulted in a distribution of grains, specifically over cell perikaprya. These experiments suggest that during the reconnection phase of nerve regeneration, large amounts of RNA may be carried within regenerating optic axons as they enter the optic tectum.  相似文献   

19.
Regeneration of the different components of the optic tract of Rutilus takes place at a variable rate and follows a relatively precise pattern. The first optic centres to be reinnervated belong to the lateral thalamo-pretectal group (5 weeks at 14 degrees C after section of the optic nerve), followed by the anterior optic tectum and lateral geniculate nucleus (8 weeks after section), the central regions of the tectum, the suprachiasmatic nucleus and the nucleus of the basal optic root (10-15 weeks after section), and finally the medial thalamo-pretectal nuclei and the caudal regions of the optic tectum (16-25 weeks after section).  相似文献   

20.
Summary The retinal projections to the brain were studied in three species of European Salamandridae using anterograde transport of horseradish peroxidase and autoradiography. The results obtained were basically identical for all species and confirmed earlier findings on the fiber supply to the preoptic nucleus and the basal optic neuropil. In the anterior thalamus projections to three distinct terminal fields are clearly visible: (i) the diffusely stained corpus geniculatum thalamicum, (ii) the neuropil of Bellonci, pars lateralis, and (iii) a dorsomedial terminal field, the neuropil of Bellonci, pars medialis. Caudal to these terminal fields is an almost terminal-free region, the lateral neuropil. In the posterior thalamus a medial terminal field, the uncinate field, and a laterally located terminal field, the posterior thalamic neuropil, are distinguishable. The tectum opticum displays as many as four dense layers of retinofugal fibers and terminals in the rostral part and, in addition, a more densely stained strip of neuropil running from rostral to caudal over the tectum. The extent of ipsilateral fibers is greater than previously reported in other urodele species. They supply the medial and the lateral parts of the neuropil of Bellonci, the uncinate field, and reach the tectum opticum via the medial optic tract. Further, they form terminals in the innermost optic fiber layer throughout the rostral half of the ipsilateral tectum. A small proportion of ipsilateral fibers contributes very sparsely to all other thalamic terminal fields, leaving only the caudal part of the tectum and several layers of the rostral tectum completely free of a direct retinofugal fiber supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号