首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative, time-resolved measurements have been made of intracellular Ca ion release by inositol 1,4,5-trisphosphate (InsP3) and extracellular ATP in porcine aortic endothelial cells in tissue culture. Intracellular free [Ca] was detected with the calcium dye fluo-3 and InsP3 released intracellularly by photolysis of 'caged' InsP3 in whole-cell voltage-clamped aortic endothelial cells. A rise of [Ca] was recorded at InsP3 concentrations greater than 0.2 microM. The timecourse at low InsP3 concentrations comprised a delay of mean 300 ms (range 266-330 ms), a peak in 2-3 s before declining with a half-time of 5-10 s. The delay and time-to-peak decreased with increasing concentrations of InsP3 over the range 0.2-5 microM. At very high concentrations of InsP3 (> 5 microM), the delay in the Ca response was short, always less than 20 ms. The results are consistent with a direct binding and gating action of InsP3 on the Ca channel of the cellular store. Following InsP3 action there is a refractoriness of the InsP3 Ca release process which recovers with a timecourse of half-time about 30 s. A comparison can be made between the timecourse of InsP3 and extracellular ATP actions. High concentrations of ATP (500 microM) acted with a delay of mean 1.8 s (range 1.2-2.5 s), whereas even moderate concentrations of InsP3 acted much more quickly, suggesting that there are slow coupling steps before or during the production of InsP3 in response to extracellular ATP. Both ATP and InsP3 evoked an increase in membrane conductance to K+, probably via Ca.  相似文献   

2.
Injection of D -myo-inositol-1,4,5-trisphosphate (IP3) was found to induce a transient increase of intracellular Ca2+ concentration in cancerous mammary cells (MMT060562) and in normal mammary cells treated with epidermal growth factor. Responses to injection of either D -myo-inositol-1,4-bisphosphate (IP2) or D -myo-inositol-1,3,4,5-tetrakisphosphate (IP4) were small or absent. Furthermore, normal mammary cells cultivated with low-protein serum replacement alone or in the presence of differentiation-inducing hormones (insulin + cortisol + prolactin) were less sensitive to IP3. Thapsigargin induced a transient increase of Ca2+ due to the release of Ca2+ from an intracellular pool. There was no difference in the peak heights of the thapsigargin-induced Ca2+ increase when mammary cells were cultivated in the presence or absence of epidermal growth factor or insulin + cortisol + prolactin. These findings suggest that the releasable intracellular Ca2+ pool remained unchanged whereas sensitivity to IP3 increases during the proliferation stage. Mechanical stimulus of a mammary cell induces an increase of intracellular Ca2+ in the stimulated cell. A certain stimulating factor is released from the mechanically stimulated cell into the extracellular space, and it induces an increase of Ca2+ in surrounding cells.18 In contrast, the IP3-induced Ca2+ increase in both cancerous and epidermal growth factor-treated normal mammary cells did not spread to adjacent cells. Therefore, increase of Ca2+ is not sufficient to account for the release of stimulating substances from mammary cells in the mechanically-induced spreading response.  相似文献   

3.
Calcium signals can be communicated between cells by the diffusion of a second messenger through gap junction channels or by the release of an extracellular purinergic messenger. We investigated the contribution of these two pathways in endothelial cell lines by photoliberating InsP(3) or calcium from intracellular caged precursors, and recording either the resulting intercellular calcium wave or else the released ATP with a luciferin/luciferase assay. Photoliberating InsP(3) in a single cell within a confluent culture triggered an intercellular calcium wave, which was inhibited by the gap junction blocker alpha-glycyrrhetinic acid (alpha-GA), the connexin mimetic peptide gap 26, the purinergic inhibitors suramin, PPADS and apyrase and by purinergic receptor desensitisation. InsP(3)-triggered calcium waves were able to cross 20 microm wide cell-free zones. Photoliberating InsP(3) triggered ATP release that was blocked by buffering intracellular calcium with BAPTA and by applying gap 26. Gap 26, however, did not inhibit the gap junctional coupling between the cells as measured by fluorescence recovery after photobleaching. Photoliberating calcium did not trigger intercellular calcium waves or ATP release. We conclude that InsP(3)-triggered ATP release through connexin hemichannels contributes to the intercellular propagation of calcium signals.  相似文献   

4.
In bovine brain, two soluble inositol-1,4,5-trisphosphate (InsP3) 5-phosphatases, which catalyse the dephosphorylation of InsP3 to inositol 1,4-bisphosphate, have been separated by DEAE-Sephacel. Type I, i.e. the first eluted enzyme, is the main soluble form and is reminiscent of the membrane-bound enzyme by multiple criteria. Type I was purified to apparent homogeneity by a method involving chromatography on DEAE-Sephacel, Blue-Sepharose, Sephacryl S-200, phosphocellulose, and C18 HPLC. A single protein band of 42-43 kDa was identified by SDS/PAGE, corresponding to the peak of maximal activity. InsP3 5-phosphatase was purified to apparent homogeneity to a final yield of 45-50 micrograms protein. The minimal estimate value of the Vmax for InsP3 5-phosphatase was in the range 20-35 mumol.min-1.mg protein-1.  相似文献   

5.
The level of [InsP3]cyt required for calcium release in A7r5 cells, a smooth muscle cell line, was determined by a new set of procedures using quantitative confocal microscopy to measure release of InsP3 from cells microinjected with caged InsP3. From these experiments, the [InsP3]cyt required to evoke a half-maximal calcium response is 100 nM. Experiments with caged glycerophosphoryl-myo-inositol 4, 5-bisphosphate (GPIP2), a slowly metabolized analogue of InsP3, gave a much slower recovery and a half-maximal response of an order of magnitude greater than InsP3. Experimental data and highly constrained variables were used to construct a mathematical model of the InsP3-dependent [Ca2+]cyt changes; the resulting simulations show high fidelity to experiment. Among the elements considered in constructing this model were the mechanism of the InsP3-receptor, InsP3 degradation, calcium buffering in the cytosol, and refilling of the ER stores via sarcoplasmic endoplasmic reticulum ATPase (SERCA) pumps. The model predicts a time constant of 0.8 s for InsP3 degradation and 13 s for GPIP2. InsP3 degradation was found to be a prerequisite for [Ca2+]cyt recovery to baseline levels and is therefore critical to the pattern of the overall [Ca2+]cyt signal. Analysis of the features of this model provides insights into the individual factors controlling the amplitude and shape of the InsP3-mediated calcium signal.  相似文献   

6.
Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.  相似文献   

7.
ATP is released into extracellular space as an autocrine/paracrine molecule by mechanical stress and pharmacological-receptor activation. Released ATP is partly metabolized by ectoenzymes to adenosine. In the present study, we found that adenosine causes ATP release in Madin-Darby canine kidney cells. This release was completely inhibited by CPT (an A1 receptor antagonist), U-73122 (a phospholipase C inhibitor), 2-APB (an inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) receptor blocker), thapsigargin (a Ca2+-ATPase inhibitor), and BAPTA/AM (an intracellular Ca2+ chelator), but not by DMPX (an A2 receptor antagonist). However, forskolin, epinephrine, and isoproterenol, inducers of cAMP accumulation, failed to release ATP. Adenosine increased intracellular Ca2+ concentrations that were strongly blocked by CPT, U-73122, 2-APB, and thapsigargin. Moreover, adenosine enhanced accumulations of Ins(1,4,5)P3 that were significantly reduced by U-73122 and CPT. These data suggest that adenosine induces the release of ATP by activating an Ins(1,4,5)P3 sensitive-Ca2+ pathway through the stimulation of A1 receptors.  相似文献   

8.
Mitochondria modulate cellular Ca2+ signals by accumulating the ion via a uniporter and releasing it via Na+- or H+-exchange. In smooth muscle, inhibition of mitochondrial Ca2+ uptake inhibits Ca2+ release from the sarcoplasmic reticulum (SR) via inositol-1,4,5-trisphosphate-sensitive receptors (IP3R). At least two mechanisms may explain this effect. First, localised uptake of Ca2+ by mitochondria may prevent negative feedback by cytosolic Ca2+ on IP3R activity, or secondly localised provision of Ca2+ by mitochondrial efflux may maintain IP3R function or SR Ca2+ content. To distinguish between these possibilities the role of mitochondrial Ca2+ efflux on IP3R function was examined. IP3 was liberated in freshly isolated single colonic smooth muscle cells and mitochondrial Na+–Ca2+ exchanger inhibited with CGP-37157 (10 μM). Mitochondria accumulated Ca2+ during IP3-evoked [Ca2+]c rises and released the ion back to the cytosol (within 15 s) when mitochondrial Ca2+ efflux was active. When mitochondrial Ca2+ efflux was inhibited by CGP-37157, an extensive and sustained loading of mitochondria with Ca2+ occurred after IP3-evoked Ca2+ release. IP3-evoked [Ca2+]c rises were initially unaffected, then only slowly inhibited by CGP-37157. IP3R activity was required for inhibition to occur; incubation with CGP-37157 for the same duration without IP3 release did not inhibit IP3R. CGP-37157 directly inhibited voltage-gated Ca2+ channel activity, however SR Ca2+ content was unaltered by the drug. Thus, the gradual decline of IP3R function that followed mitochondrial Na+–Ca2+ exchanger inhibition resulted from a gradual overload of mitochondria with Ca2+, leading to a reduced capacity for Ca2+ uptake. Localised uptake of Ca2+ by mitochondria, rather than mitochondrial Ca2+ efflux, appears critical for maintaining IP3R activity.  相似文献   

9.
Inositol 1,4,5-trisphosphate (IP3) rapidly increased 45Ca2+ efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked 45Ca2+ release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked 45Ca2+ release. IP3 strongly stimulated 45Ca2+ efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced 45Ca2+ efflux suggests that IP3 activated a Ca2+ channel, rather than a carrier, by a ligand-binding, rather than a metabolic, reaction.  相似文献   

10.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) 3-kinases (IP(3)Ks) are a group of calmodulin-regulated inositol polyphosphate kinases (IPKs) that convert the second messenger Ins(1,4,5)P(3) into inositol 1,3,4,5-tetrakisphosphate. However, what they contribute to the complexities of Ca(2+) signaling, and how, is still not fully understood. In this study, we have used a simple Ca(2+) imaging assay to compare the abilities of various Ins (1,4,5)P(3)-metabolizing enzymes to regulate a maximal histamine-stimulated Ca(2+) signal in HeLa cells. Using transient transfection, we overexpressed green fluorescent protein-tagged versions of all three mammalian IP(3)K isoforms, including mutants with disrupted cellular localization or calmodulin regulation, and then imaged the Ca(2+) release stimulated by 100 microm histamine. Both localization to the F-actin cytoskeleton and calmodulin regulation enhance the efficiency of mammalian IP(3)Ks to dampen the Ins (1,4,5)P(3)-mediated Ca(2+) signals. We also compared the effects of the these IP(3)Ks with other enzymes that metabolize Ins(1,4,5)P(3), including the Type I Ins(1,4,5)P(3) 5-phosphatase, in both membrane-targeted and soluble forms, the human inositol polyphosphate multikinase, and the two isoforms of IP(3)K found in Drosophila. All reduce the Ca(2+) signal but to varying degrees. We demonstrate that the activity of only one of two IP(3)K isoforms from Drosophila is positively regulated by calmodulin and that neither isoform associates with the cytoskeleton. Together the data suggest that IP(3)Ks evolved to regulate kinetic and spatial aspects of Ins (1,4,5)P(3) signals in increasingly complex ways in vertebrates, consistent with their probable roles in the regulation of higher brain and immune function.  相似文献   

11.
It is known that the Na/K-ATPase alpha1 subunit interacts directly with inositol 1,4,5-triphosphate (IP(3)) receptors. In this study we tested whether this interaction is required for extracellular stimuli to efficiently regulate endoplasmic reticulum (ER) Ca(2+) release. Using cultured pig kidney LLC-PK1 cells as a model, we demonstrated that graded knockdown of the cellular Na/K-ATPase alpha1 subunit resulted in a parallel attenuation of ATP-induced ER Ca(2+) release. When the knockdown cells were rescued by knocking in a rat alpha1, the expression of rat alpha1 restored not only the cellular Na/K-ATPase but also ATP-induced ER Ca(2+) release. Mechanistically, this defect in ATP-induced ER Ca(2+) release was neither due to the changes in the amount or the function of cellular IP(3) and P2Y receptors nor the ER Ca(2+) content. However, the alpha1 knockdown did redistribute cellular IP(3) receptors. The pool of IP(3) receptors that resided close to the plasma membrane was abolished. Because changes in the plasma membrane proximity could reduce the efficiency of signal transmission from P2Y receptors to the ER, we further determined the dose-dependent effects of ATP on protein kinase Cepsilon activation and ER Ca(2+) release. The data showed that the alpha1 knockdown de-sensitized the ATP-induced ER Ca(2+) release but not PKCepsilon activation. Moreover, expression of the N terminus of Na/K-ATPase alpha1 subunit not only disrupted the formation of the Na/K-ATPase-IP(3) receptor complex but also abolished the ATP-induced Ca(2+) release. Finally, we observed that the alpha1 knockdown was also effective in attenuating ER Ca(2+) release provoked by angiotensin II and epidermal growth factor.  相似文献   

12.
The effect of inositol-1,4,5-trisphosphate on Ca2+ release from microsomes isolated from dark-grown zucchini (Cucurbita pepo L.) hypocotyls was studied. Up to 30% of the Ca2+ taken up by the microsomes in the presence of 2mM ATP, was released by mumolar concentrations of inositol-1,4, 5-trisphosphate. This release was very rapid (less than 0.5 min) and was followed by a slower re-uptake of Ca2+. The microsomal levels of Ca2+ previously attained were not re-established within 5 min. External concentration of free Ca2+ was maintained in the 10(-8)M region during the release. This is the first time that inositol-1,4,5-trisphosphate has been shown to have a regulatory effect on Ca2+ in plant membrane fractions. Phosphoinositides may be important in signal transduction in plant cells, by altering the cytoplasmic Ca2+ activity, a function already known in animal cells.  相似文献   

13.
ADP and ATP, in the 1-100 microM range of concentrations, increased the formation of inositol phosphates in bovine aortic endothelial cells. The accumulation of inositol trisphosphate in response to adenine nucleotides was rapid (maximum at 15 s) and transient. This material was identified as the biologically active isomer inositol 1,4,5-trisphosphate on the basis of its retention time by high-performance liquid chromatography on an anion-exchange resin. AMP and adenosine have no effect on inositol phosphates. The action of ATP and ADP was mimicked with an equal potency and activity by their phosphorothioate analogs, ATP gamma S and ADP beta S, and with a lower potency by adenosine 5'-(beta,gamma-imido)triphosphate, whereas adenosine 5'-(alpha,beta-methylene)triphosphate, was inactive. In the same range of concentrations, ADP and ATP induced an efflux of 45Ca2+ from prelabeled bovine aortic endothelial cells and increased the fluorescence emission by cells loaded with quin-2. Here, too, AMP and adenosine were completely inactive. The outflow of 45Ca2+ induced by ADP was partially maintained in a calcium-free medium. These data suggest that in aortic endothelial cells, P2-purinergic receptors, of the P2Y subtype, are coupled to the hydrolysis of phosphatidylinositol bisphosphate by a phospholipase C. It is likely that the release of prostacyclin and endothelium-derived relaxing factor in response to ADP and ATP is a consequence of this initial event.  相似文献   

14.
The activity of inositol-1,4,5-trisphosphate 3-kinase in the cytosol fraction of guinea pig macrophages was assayed with special reference to the dependence on the free Ca2+ concentration. The enzyme activity, as assessed by the production of inositol 1,3,4,5-tetrakisphosphate was reversibly activated by free Ca2+ concentrations ranging from 10(-7) to 10(-6)M. The calmodulin antagonists, W-7 and chlorpromazine, inhibited the Ca2+-activated enzyme activity in a dose-dependent fashion, thereby indicating that calmodulin may be involved in the activation by Ca2+. The content of calmodulin in the cytosol fraction (about 2.8 micrograms/mg of cytosol protein) was markedly reduced to less than 0.03 microgram/mg of proteins by subfractionation by ammonium sulfate, followed by an anion-exchange chromatography. The subfraction obtained by the chromatography showed no Ca2+ dependence in the enzyme activity, while an exogenous addition of calmodulin with 10(-6)M Ca2+ increased the enzyme activity. The enzyme activity was retained on a calmodulin-affinity column in the presence of Ca2+, and was eluted from the column by lowering the free Ca2+ concentration by adding ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. These results clearly indicate that calmodulin activates the inositol-1,4,5-trisphosphate 3-kinase activity.  相似文献   

15.
Biological messengers can be "caged" by adding a single photosensitive group that can be photolyzed by a light flash to achieve spatially and temporally precise biochemical control. Here we report that photolysis of a double-caged form of the second messenger inositol 1,4,5-trisphosphate (IP3) triggers focal calcium release in Purkinje cell somata, dendrites, and spines as measured by two-photon microscopy. In calbindin knock-out Purkinje cells, peak calcium increased with flash energy with higher cooperativity for double-caged IP3 than for conventional single-caged IP3, consistent with a chemical two-photon effect. Spine photolysis of double-caged IP3 led to local calcium release. Uncaging of glycerophosphoryl-myo-inositol 4,5-bisphosphate (gPIP2), a poorly metabolizable IP3 analog, led to less well localized release. Thus, IP3 breakdown is necessary for spine-specificity. IP3- and gPIP2-evoked signals declined from peak with similar, slow time courses, indicating that release lasts hundreds of milliseconds and is terminated not by IP3 degradation but by intrinsic receptor dynamics. Based on measurements of spine-dendrite coupling, IP3-evoked calcium signals are expected to be at least 2.4-fold larger in their spine of origin than in nearby spines, allowing IP3 to act as a synapse-specific second messenger. Unexpectedly, single-caged IP3 led to less release in somata and was ineffective in dendrites and spines. Calcium release using caged gPIP2 was inhibited by the addition of single-caged IP3, suggesting that single-caged IP3 is an antagonist of calcium release. Caging at multiple sites may be an effective general approach to reducing residual receptor interaction.  相似文献   

16.
Microsomal vesicles from bovine anterior pituitary accumulate Ca2+ and maintain a steady-state ambient Ca2+ level of 200 nM. IP3 and GTP both induce calcium release from the microsomal vesicles. The effect of IP3 is inhibited by polyethylene glycol (PEG), and the effect of GTP is absolutely dependent on PEG. Half-maximal effect of IP3 (without PEG) is 0.26 micron, the maximal calcium release attaining 7% of the A23187-releasable pool. The same values for GTP (in the presence of PEG) are 80 microM and 10%, respectively. GTP potentiates the effect of IP3. This potentiation is not mediated by protein phosphorylation.  相似文献   

17.
Purified internal platelet membranes were treated with the catalytic subunit of protein kinase A to determine its effect on inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release. Release kinetics were monitored using rhod-2, a Ca(2+)-specific fluorophore. Protein kinase A maximally inhibited the rate of IP3-mediated Ca2+ release by approximately 30% at saturating IP3 (10 microM). This inhibition was eliminated by pretreatment with a specific kinase inhibitor peptide. Partial purification of the platelet IP3 receptor showed that both endogenous kinases and added A kinase directly phosphorylate the receptor. Since the IP3 receptor is phosphorylated in the absence of added kinase, the observed inhibition (30%) by protein kinase A does not represent the maximal effect of phosphorylation.  相似文献   

18.
In this study, we report our data on the binding of D-myoinositol(1,4,5)P3 and of 6-deoxy D-myoinositol(1,4,5)P3 to a rat parotid microsomal fraction and their effect on Ca2+ release. The binding affinity and the potency of 6-deoxy Ins(1,4,5)P3 to induce Ca2+ release are about 100 times lower than those of Ins(1,4,5)P3. However, maximal concentrations of both inositol trisphosphates induce similar calcium efflux and present comparable displacement of radioligand binding. Experiments were performed to exclude that the microsomal preparations used display rapid metabolism of Ins(1,4,5)P3 or 6-deoxy Ins(1,4,5)P3 during binding and Ca2+ release. We also report that, in permeabilized rat parotid acini preparations, 6-deoxy Ins(1,4,5)P3 is about 100 times less potent than Ins(1,4,5)P3 in inducing Ca2+ release. These data indicate that removal of the hydroxyl group in position 6 of the Ins(1,4,5)P3 molecule severely reduces its binding affinity which seems, in a large part at least, responsible for the reported loss of potency in mobilizing Ca2+. Nevertheless, 6-deoxy Ins(1,4,5)P3 seems to be a full agonist for the release of Ca2+.  相似文献   

19.
Veresov VG  Konev SV 《Biofizika》2005,50(3):480-487
The dynamics of the inositol-1,4,5-triphosphate-sensitive calcium channel after binding of inositol-1,4,5-triphosphate and Ca2+ was analyzed by the Monte Carlo minimization technique. It was shown that the binding of Ca2+ with the unliganded receptor (channel) leads to a turning of the beta-sheet domain relative to the alpha-helical domain with the formation of the receptor conformation that is open for the entry of ions into the cytoplasmic channel vestibule, sterically closed for their passage through the vestibule in the part adjacent to the alpha-helical domains, and unfavourable for subsequent binding of inositol-1,4,5-triphosphate with the receptor. When both co-agonists bind to the receptor, the structure rearrangements induced eliminate both these steric obstacles for the passage of ions through the IP3-binding domain: one at the entrance of the channel cytoplasmic vestibule and the other that is placed deeper in the vestibule near the alpha-domains. The role of the dynamics of the receptor binding core in the IP3-sensitive channel gating is discussed.  相似文献   

20.
V Henne  A Piiper  H D S?ling 《FEBS letters》1987,218(1):153-158
It has been shown recently by several groups that 5'-GTP can release calcium from intracellular compartments independently from inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) by a mechanism which seems to be different from that used by Ins(1,4,5)P3. We report here for the first time that the 5'-GTP-sensitive and the Ins(1,4,5)P3-sensitive calcium pools reside in different intracellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号