首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Selective H2-histamine agonist dimaprit was shown to produce relaxation of the isolated frog subclavian vein, with it persisting under the effect of selective H2-histamine antagonist cimetidine. Possible nonspecific mechanisms of relaxation produced by histamine are discussed. The data presented do not exclude that there are atypical H2-histamine receptors in subclavian vein of frogs, the activation of which initiates the attenuation of the active tension.  相似文献   

2.
The study has analysed the action of histamine in the rabbit venous system and evaluated its potential role in contraction during increased venous pressure. We have found that a great variety exists in histamine sensitivity and H(1) -histamine receptor expression in various types of rabbit veins. Veins of the extremities (saphenous vein, femoral vein, axillary vein) and abdomen (common iliac vein, inferior vena cava) responded to histamine by a prominent, concentration-dependent force generation, whereas great thoracic veins (subclavian vein, superior vena cavas, intrathoracic part of inferior vena cava) and a pelvic vein (external iliac vein) exhibited slight sensitivity to exogenous histamine. The lack of reactivity to histamine was not due to increased activity of nitric oxide synthase (NOS) or heme oxygenase-1. H(1) -histamine receptor expression of veins correlated well with the histamine-induced contractions. Voltage-dependent calcium channels mediated mainly the histamine-induced force generation of saphenous vein, whereas it did not act in the inferior vena cava. In contrast, the receptor-operated channels were not involved in this response in either vein. Tyrosine phosphorylation occurred markedly in response to histamine in the saphenous vein, but not in the inferior vena cava. Histamine induced a prominent ρ kinase activation in both vessels. Protein kinase C and mitogen-activated protein kinase (MAPK) were not implicated in the histamine-induced intracellular calcium sensitization. Importantly, transient clamping of the femoral vein in animals caused a short-term constriction, which was inhibited by H(1) -histamine receptor antagonist in vivo. Furthermore, a significantly greater histamine immunopositivity was detected in veins after stretching compared to the resting state. We conclude that histamine receptor density adapts to the actual requirements of the circulation, and histamine liberated by the venous wall during increased venous pressure contributes to the contraction of vessels, providing a force for the venous return.  相似文献   

3.
Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.  相似文献   

4.
In particulate preparations from guinea-pig ventricle, histamine in the concentration range 10(-6)--10(-3) M caused a 3--5fold stimulation of adenylate cyclase activity which was dependent on the presence of GTP. The effects of fourteen analogs of histamine were examined on this cyclase preparation. Five of the compounds studied proved to be partial agonists relative to histamine while nine others had essentially the same intrinsic activity as histamine. The intrinsic activities of the partial agonists were increased by GppNHp to the extent that dimaprit, which was a partial agonist in the presence of GTP, became a full agonist in the presence of GppNHp. The relative potencies of the full agonists as activators of the cyclase were found to correlate with the relative potencies on physiologically defined H2 receptor systems. Activation of the cyclase by histamine, as well as by several of the agonist analogs, including dimaprit and tolazoline, was completely blocked by the H2 antagonist cimetidine, but was not affected by pharmacologically relevant concentrations of the H1 antagonist mepyramine, the beta-blocker alprenolol, or the alpha-blocker phentolamine. The results suggest that all the agonists studied probably interact with a common H2 receptor site on the cardiac muscle cell leading to activation of adenylate cyclase. The accompanying increase in cyclic AMP is presumably responsible for the chronotropic and inotropic effects of histamine and related compounds on cardiac muscle.  相似文献   

5.
INTRODUCTION: The neuroendocrine histamine-secreting cell of the gastric fundus, the enferochromaffin-like cell, is the principal regulator of parietal cell acid secretion. We have proposed that histamine may regulate its own synthesis and release via an autocrine mechanism. The purpose of this study was to evaluate the role of the histamine receptor subtypes H1, H2 and H3 in the regulation of this phenomenon. METHODS: Purified ECL cells were isolated by pronase digestion and EDTA exposure of the rat stomach, followed by particle size and density separation using counterflow elutriation and Nycodenz gradient centrifugation, 24-hr cultured cells were pretreated for 30 min with the agents; H1 receptor agonist (2-[(3-trimethyl)-diphenyl] histamine) (TMPH), H1 receptor antagonist (terfenadine); H2 receptor agonist (dimaprit) or antagonist (cimetidine or loxitidine); or H3 receptor agonist (imetit) or antagonist (thioperamide) (all tested, 10(-10)-10(-6) M). Gastrin was then used to stimulate histamine secretion. Histamine secretion was quantified by specific enzyme-immunoassay. RESULTS: Basal histamine secretion was 2.7 +/- 0.14 nmol/10(3) cells. Gastrin-stimulated (10 nM) levels were 4.6 +/- 0.4 nmol/10(3) cells (p < .01). TMPH inhibited both basal and gastrin driven histamine secretion with a maximal effect (34 percent) (1.78 +/- 0.08 nmol/10(3) cells) and an IC50 of > 5 x 10(-7) M. H1 receptor antagonism did not alter histamine secretion alone or in combination with gastrin. Neither H2 receptor stimulation nor antagonism had any effect on histamine secretion alone or in combination with gastrin. Gastrin-induced histamine secretion was dose-dependently inhibited by imetit (H3 agonist) with a maximal effect (2.4 +/- 0.6 nmol/10(3) cells) (p < .05) and an IC50 of 10(-9) M. Conversely, Thioperamide (H3 antagonist) dose-dependently augmented gastrin-stimulated histamine secretion with a maximum effect (5.7 +/- 0.5 nmol/10(3) cells) (p < .05) at 10(-8) M and an EC50 of 7 x 10(-10) M. CONCLUSION: These data are consistent with the presence of an H3 receptor on the ECL cell which modulates gastrin-stimulated histamine secretion. Our observations support the proposal that a histamine-mediated short-loop autocrine regulatory mechanism of ECL cell secretion exists.  相似文献   

6.
Adrenal medullary chromaffin cells maintained in vitro were prelabeled with [3H]inositol and the accumulation of [3H]inositol-1-phosphate, was determined following stimulation with a variety of pharmacological agents. Carbachol, bradykinin, and histamine produced significantly greater accumulation of [3H] inositol-1-phosphate over basal levels, with histamine producing the greatest effect. H1-histamine receptor antagonists, mepyramine, pyrilamine, tripelennamine and clemastine were all able to reduce or completely block the histamine response. The two specific H2-histamine receptor antagonists, cimetidine and ranitidine, had no effect on this response. Histamine dose-response characteristics in the presence of mepyramine and clemastine suggest the H1 antagonism to be competitive in nature.  相似文献   

7.
Intrahippocampal administration of the histamine H1 receptor antagonist pyrilamine (3.2-32 ug/ side) but not the histamine H2 receptor antagonist cimetidine (1.0-10 microg/side) increased the number of errors in the working memory task with a three-panel runway setup. The increase in working memory errors induced by intrahippocampal 32 microg/side pyrilamine was significantly reduced by concurrent infusion of the histamine H1 receptor agonist 2-pyridylethylamine (3.2 and 10 microg/side). The cholinesterase inhibitor physostigmine ( 1.0 and 3.2 microg/side) and D-cycloserine (0.32 and 1.0 microg/side), the partial agonist at the glycine binding site on the NMDA receptor/channel complex, reduced the increase in working memory errors induced by intrahippocampal 32 microg/side pyrilamine. These results suggest that the hippocampal histaminergic activity via histamine H1 receptor is necessary for normal working memory processes and that the septohippocampal cholinergic activation and positive modulation of the NMDA receptor/channel through activation of the glycine site can alleviate dysfunction of hippocampal histamine H1 receptor-mediated neurotransmission involved in working memory function.  相似文献   

8.
Y Shi  R Sheng  T Zhong  Y Xu  X Chen  D Yang  Y Sun  F Yang  Y Hu  N Zhou 《PloS one》2012,7(8):e42185
The histamine H3 receptor (H3R) has been recognized as a promising target for the treatment of various central and peripheral nervous system diseases. In this study, a non-imidazole compound, ZEL-H16, was identified as a novel histamine H3 receptor agonist. ZEL-H16 was found to bind to human H3R with a Ki value of approximately 2.07 nM and 4.36 nM to rat H3R. Further characterization indicated that ZEL-H16 behaved as a partial agonist on the inhibition of forskolin-stimulated cAMP accumulation (the efficacy was 60% of that of histamine) and activation of ERK1/2 signaling (the efficacy was 50% of that of histamine) at H3 receptors, but acted as a full agonist just like histamin in the guinea-pig ileum contraction assay. These effects were blocked by pertussis toxin and H3 receptor specific antagonist thioperamide. ZEL-H16 showed no agonist or antagonist activities at the cloned human histamine H1, H2, and H4 receptors and other biogenic amine GPCRs in the CRE-driven reporter assay. Furthermore, our present data demonstrated that treatment of ZEL-H16 resulted in intensive H3 receptor internalization and delayed recycling to the cell surface as compared to that of control with treatment of histamine. Thus, ZEL-H16 is a novel and potent nonimidazole agonist of H3R, which might serve as a pharmacological tool for future investigations or as possible therapeutic agent of H3R.  相似文献   

9.
The histamine H3 receptor agonist (R)alpha-methylhistamine (MeHA) inhibited, in a nanomolar range, basal and carbachol-stimulated inositol phosphate formation in the human gastric tumoral cell line HGT1-clone 6. The inhibition was reversed by micromolar concentrations of the histamine H3 receptor antagonist thioperamide and was sensitive to cholera or pertussis toxin treatment. Using [3H]N alpha-MeHA as specific tracer, high affinity binding sites were demonstrated with a Bmax of 54 +/- 3 fmol/mg of protein and a KD of either 0.61 +/- 0.04 or 2.2 +/- 0.4 nM, in the absence or presence of 50 microM GTP[gamma]S, respectively. The binding sites were solubilized by Triton X-100 and prepurified by gel chromatography. They were separated from the histamine H2 receptor sites by filtration through Sepharose-famotidine and finally retained on Sepharose-thioperamide. The purified sites concentrated in one single silver-stained protein band of 70 kDa in SDS-polyacrylamide gel electrophoresis. They specifically bound [3H]N alpha-MeHA with a KD of 1.6 +/- 0.1 nM and a Bmax of 12,000 +/- 750 pmol/mg of protein. This corresponds to a 90,225-fold purification over cell lysate and a purity degree of 84%. Binding was competitively displaced by N alpha-MeHA (IC50 = 5.8 +/- 0.7 nM), (R) alpha-MeHA (IC50 = 9 +/- 1 nM), and thioperamide (IC50 = 85 +/- 10 nM), but not by famotidine (H2 antagonist) or by mepyramine (H1 antagonist). These findings provide the first evidence for solubilization, purification, and molecular mass characterization of the histamine H3 receptor protein and for the negative coupling of this receptor phosphatidylinositol turnover through a so far unidentified G protein.  相似文献   

10.
Regulation of Ca2+-dependent glycogen phosphorylase activity by alpha 1-adrenergic and H1-histamine receptors has been examined in BC3H-1 muscle cells. Stimulation by either norepinephrine or histamine elevates the phosphorylase activity ratio within 5 s from a resting value of 0.37 +/- 0.03 to maximal values of 0.8-0.9. Phosphorylase activation by alpha-adrenergic agonists is sustained over 20-30 min of agonist exposure, whereas histamine exposure only transiently activates phosphorylase during the initial 5 min of stimulation. The initial activation of phosphorylase by either receptor is not attenuated by treated cells with Ca2+-deficient and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid-supplemented buffer, whereas the response to sustained adrenergic stimulation depends largely, but not totally, upon extracellular Ca2+. The involvement of protein kinase C in agonist responses was tested by treating cells with phorbol 12-myristate 13-acetate. Phorbol 12-myristate 13-acetate inhibits receptor-mediated mobilization of intracellular Ca2+ (IC50 = 3.6 nM) yet activates phosphorylase independently of agonist. Phorbol 12-myristate 13-acetate has no effect on cellular 45Ca2+ fluxes in the absence of agonist. Thus, the two receptors coordinately regulate intracellular signaling through Ca2+- and protein kinase C-mediated pathways. alpha 1-Adrenergic receptors elicit sustained phosphorylase activation whereas H1-histaminergic receptors desensitize.  相似文献   

11.
Increasing evidence suggests that a continuous release of histamine from mast cells occurs in the airways of asthmatic patients and that histamine may modulate functions of other inflammatory cells such as macrophages. In the present study histamine (10(-9)-10(-6) M) increased in a concentration-dependent fashion the basal release of beta-glucuronidase (EC(50) = 8.2 +/- 3.5 x 10(-9) M) and IL-6 (EC(50) = 9.3 +/- 2.9 x 10(-8) M) from human lung macrophages. Enhancement of beta-glucuronidase release induced by histamine was evident after 30 min and peaked at 90 min, whereas that of IL-6 required 2-6 h of incubation. These effects were reproduced by the H(1) agonist (6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptane carboxamide but not by the H(2) agonist dimaprit. Furthermore, histamine induced a concentration-dependent increase of intracellular Ca(2+) concentrations ([Ca(2+)](i)) that followed three types of response, one characterized by a rapid increase, a second in which [Ca(2+)](i) displays a slow but progressive increase, and a third characterized by an oscillatory pattern. Histamine-induced beta-glucuronidase and IL-6 release and [Ca(2+)](i) elevation were inhibited by the selective H(1) antagonist fexofenadine (10(-7)-10(-4) M), but not by the H(2) antagonist ranitidine. Inhibition of histamine-induced beta-glucuronidase and IL-6 release by fexofenadine was concentration dependent and displayed the characteristics of a competitive antagonism (K(d) = 89 nM). These data demonstrate that histamine induces exocytosis and IL-6 production from human macrophages by activating H(1) receptor and by increasing [Ca(2+)](i) and they suggest that histamine may play a relevant role in the long-term sustainment of allergic inflammation in the airways.  相似文献   

12.
1. These experiments investigated the action of histamine on local inhibition in the CA1 region of the in vitro hippocampal slice preparation using a paired-pulse paradigm. 2. We observed that histamine produced a concentration-dependent and reversible attenuation of paired-pulse inhibition. This effect was reduced by the H2 receptor antagonist, cimetidine, and mimicked by the H2 receptor agonist, impromidine. 3. We also observed that histamine produced concentration-dependent effects on the amplitude of the population spike that could be correlated with alterations in the field excitatory postsynaptic potential (EPSP) amplitude and input fiber volley. High concentrations of histamine produced a reduction in the amplitude of the population spike which was always accompanied by a reduction in the EPSP and fiber volley amplitude. 4. These results suggest that histamine, through the occupancy of H2 receptors, acts to modulate the efficacy of the local synaptic circuitry which is involved in producing paired-pulse inhibition in the hippocampus.  相似文献   

13.
The effects of histamine on the firing of cerebellar granule cells were investigated in vitro. Histamine predominantly produced excitatory (117/123, 95.1%) and in a few cases inhibitory (6/123, 4.9%) responses in granule cells. The histamine-induced excitation was not blocked by perfusing the slice with low Ca2+/high Mg2+ medium, supporting a direct postsynaptic action of histamine. The H1 receptor antagonists triprolidine and chlorpheniramine significantly diminished the histamine-induced excitation, but the H2 receptor antagonist ranitidine did not significantly reduce the excitation. On the other hand, the H2 receptor agonist dimaprit could elicit a weak excitation of granule cells. This dimaprit-induced excitation was blocked by ranitidine but not triprolidine. These results reveal that the excitatory effect of histamine on cerebellar granule cells is mediated by both H1 and H2 receptors with a predominant contribution of H1 receptors. The relevance of these findings to the possible function of the hypothalamocerebellar histaminergic fibers in cerebellum is discussed.  相似文献   

14.
The influence of histamine at various concentrations on the cell cycle state of hematopoietic stem cells (CFU-s) was investigated. CFU-s were triggered from the G0 state into the S phase of the cell cycle by in vitro treatment of mouse bone marrow cells with high concentrations of histamine. This effect could be antagonized by a histamine H2 receptor blocking agent. When bone marrow cells were treated with a histamine H1 receptor antagonist prior to histamine treatment, low concentrations of histamine also triggered the entrance of CFU-s into the DNA synthetic phase. Our findings further suggest the existence of histamine H1 and H2 receptors on the surface of CFU-s cells and the antagonistic effect of these two histamine receptor subtypes on the cell cycle state of CFU-s. Our results also suggest that histamine may participate in regulating the proliferation of hematopoietic stem cells in vivo during immune or inflammatory responses.  相似文献   

15.
In Tetrahymena pyriformis the phagocytotic rate increases in response to histamine, but neither the H1 antagonist phenindamine nor the H2 antagonist metiamide stimulate phagocytosis. The H1 antagonist counteracts the effect of histamine, whereas the H2 antagonist does not. The histamine receptor of Tetrahymena is of H1-type, since it cannot distinguish between histamine and antagonists which are closely related to it chemically. It does, however, distinguish between histamine and the chemically unrelated H1 antagonist, phenindamine. The H2 antagonist does not interact with the receptor.  相似文献   

16.
The purpose of this study was to examine the effects of thioperamide, a histamine H3 antagonist, on the locomotor activity and the brain histamine content in mast-cell-deficient W/Wv mice. Thioperamide (12.5 and 25 mg/kg) showed significant increase in the locomotor activity of W/Wv mice, measured by a photo-beam system, 1 hr after the intraperitoneal injection. However, more than 75 mg/kg of thioperamide showed not only the reduction of the locomotor activity but also the inhibition of motor coordination measured by the rotarod performance. The increase in the locomotor activity by thioperamide was blocked by i. p. pretreatment with (R)-alpha-methyl-histamine, an H3 agonist, or pyrilamine, an H1 antagonist, or zolantidine, an H2 antagonist. The brain histamine content was decreased by thioperamide (12.5-75.0 mg/kg), 1 hr after administration. Thus, the blockade of histamine H3 receptor by thioperamide showed the activation of locomotor activity of mice, which may be mediated by H1 and/or H2 receptors. The present data support the hypothesis that central histaminergic neurons may be involved in the control of state of wakefulness.  相似文献   

17.
Using histamine and the H3 receptor antagonist thioperamide, the roles of histamine receptors in NMDA-induced necrosis were investigated in rat cultured cortical neurons. Within 3 h of intense NMDA insult, most neurons died by necrosis. Histamine reversed the neurotoxicity in a concentration-dependent manner and showed peak protection at a concentration of 10(-7) m. This protection was antagonized by the H2 receptor antagonists cimetidine and zolantidine but not by the H1 receptor antagonists pyrilamine and diphenhydramine. In addition, the selective H2 receptor agonist amthamine mimicked the protection by histamine. This action was prevented by cimetidine but not by pyrilamine. 8-Bromo-cAMP also mimicked the effect of histamine. In contrast, both the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine and the cAMP-dependent protein kinase inhibitor N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide reversed the protection by histamine. Thioperamide also attenuated NMDA-induced excitotoxicity, which was reversed by the H3 receptor agonist (R)-alpha-methylhistamine but not by pyrilamine and cimetidine. In addition, the protection by thioperamide was inhibited by the GABA(A) receptor antagonists picrotoxin and bicuculline. Further study demonstrated that the protection by thioperamide was due to increased GABA release in NMDA-stimulated samples. These results indicate that not only the H2 receptor/cAMP/cAMP-dependent protein kinase pathway but also the H3 receptor/GABA release pathway can attenuate NMDA-induced neurotoxicity.  相似文献   

18.
BACKGROUND: H2-histamine receptors mediate a wide range of physiological functions extending from stimulation of gastric acid secretion to induction of human promyelocyte differentiation. We have previously cloned the H2-histamine receptor gene and noted that only three amino acids on the receptor were sufficient to define its specificity and selectivity. Despite only modest overall amino acid homology (34% amino acid identity and 57.5% similarity) between the H2-histamine receptor and the receptor for another monoamine, the beta 2-adrenergic receptor, there is remarkable similarity at their critical ligand binding sites. We hypothesized that, if the specificity and selectivity of both receptors are invested in just three amino acids, it should be possible to convert one of the receptors into one that recognizes the ligand of the other by simple mutations at only one or two sites. MATERIAL AND METHODS: We explored the effect of two single mutations in the fifth transmembrane domain of the H2-histamine receptor, which encompasses the sites that determine H2 selectivity. The canine H2 receptor gene was mutated at Asp186 and Gly187 (Asp186 to Ala186 and Gly187 to Ser187) by oligonuceotide directed mutagenesis. The coding region of both the wild-type and mutated H2 receptors was subcloned into the eukaryotic expression vector, CMVneo, and stably transfected into Hepa cells and L cells. The biological activity of histamine and epinephrine on the expressed receptor was examined by measurement of cellular cAMP production and inositol trisphosphate formation. RESULTS: Hepa cells transfected with the Ala186-Ser187 mutant H2 receptor demonstrated a biphasic rise in cAMP in response to epinephrine with an early phase (ED50 approximately 10(-11) M) that could be inhibited by both propranolol and cimetidine. Epinephrine also induced IP3 generation in the same cells, a biological response that is characteristic of activation of the wild-type H2 but not of the beta-adrenergic receptor. L cells transfected with the Ala186-Ser187 mutant H2 receptor also responded to epinephrine in a cimetidine and propranolol inhibitable manner. CONCLUSIONS: We converted the H2-histamine receptor into a bifunctional one that has characteristics of both histamine and adrenergic receptors by two simple mutations. These results support the hypothesis that ligand specificity is determined by only a few key points on a receptor regardless of the structure of the remainder of the molecule. Our studies have important implications on the design of pharmacological agents targeted for action at physiological receptors.  相似文献   

19.
H2 Histamine Receptors on the Epithelial Cells of Choroid Plexus   总被引:2,自引:2,他引:0  
A major site of cerebrospinal fluid production in vertebrates is the choroid plexus. The epithelial cells of the choroid plexus accumulate intracellular cyclic AMP in response to several effectors, including histamine. Since histamine is known to regulate fluid secretion in the stomach via H2 histamine receptors, we asked whether H2 receptors might also be present on epithelial cells of bovine choroid plexus. Using agonists and antagonists of histamine, we show that an agonist and antagonist pair specific for the H2 subtype were clearly more effective than an H1 agonist and antagonist pair in mimicking or inhibiting histamine stimulation of cellular cyclic AMP. Analysis by Schild plot allowed assignment of an apparent dissociation constant to the H2 antagonist metiamide which was 34-fold lower than that of its H1 counterpart, diphenhydramine. These results indicate that epithelial cells of the choroid plexus possess H2 histamine receptors.  相似文献   

20.
Demonstration of histamine H2 receptors on human melanoma cells   总被引:1,自引:0,他引:1  
Histamine induced a concentration-dependent increase in intracellular cyclic-AMP of the two human melanoma cell lines SK23 and DX3.LT5.1; maximal stimulation was obtained with 17.8 microM histamine which consistently produced greater than 50-fold increases in the cyclic AMP content of both cell lines. The dose-response curve for histamine in each culture was progressively displaced to the right with increasing concentrations of the histamine H2 receptor antagonist cimetidine. Ranitidine, another H2 receptor antagonist also prevented the histamine-induced cyclic AMP elevation, but the H1 receptor antagonists mepyramine and tripelennamine had no significant effect. These findings indicate that human melanoma cells express histamine H2 receptors, stimulation of which activates adenylate cyclase with a subsequent rise in intracellular cyclic AMP. Mast cell:melanoma interactions mediated by histamine in vivo might therefore be expected to modify some aspects of melanoma cell behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号