首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abnormal complex formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein and pathological ubiquitination of abnormal complex are two pathological processes involved in DRPLA neurodegeneration. Pathological ubiquitination and solubility in SDS and reducing agent are two unique characteristics of the DRPLA protein complex. Ubiquitination of abnormal DRPLA protein complex in DRPLA brain tissue is heat-resistant and stronger than that in control brain tissue. Pathological ubiquitination of DRPLA protein complex correlates with the onset of symptoms and the size of an expanded glutamine repeat in brain tissue of patients with DRPLA. Pathological ubiquitination plays an important role in DRPLA pathology. DRPLA protein complex is water-insoluble but soluble in SDS and reducing agent, and displays no difference in water insolubility between control and DRPLA brain tissue. Abnormal insoluble complex formation is not developed by a qualitative change in water insolubility of DRPLA protein complex but is developed by a spontaneous accumulation of an abnormally large amount of the DRPLA protein complex.  相似文献   

2.
This review covers the observations that erythrocyte spectrin has a E2 ubiquitin conjugating enzymatic activity that allows it to transfer ubiquitin to a target site in the alpha-spectrin repeats 20/21. The position of this ubiquitination site suggests that ubiquitination may regulate alpha beta spectrin heterodimer nucleation, spectrin-4.1-actin ternary complex formation, and adducin stimulated spectrin-actin attachment in the mature erythrocyte. In sickle cells, which contain altered redox status (high GSSG/GSH ratio), ubiquitin attachment to the E2 and target sites in alpha-spectrin is greatly diminished. We propose that this attenuated ubiquitination of spectrin may be due to glutathiolation of the E2 active site cysteine leading to diminished ubiquitin-spectrin adduct and conjugate formation. Furthermore we propose that lack of ubiquitin-spectrin complex formation leads to dysregulation of the membrane skeleton in mature SS erythrocytes and may diminish spectrin turnover in SS erythropoietic cells via the ubiquitin proteasome machinery. In hippocampal neurons, spectrin is the major ubiquitinated protein and a component of the cytoplasmic ubiquitinated inclusions observed in Alzheimer's and Parkinson's diseases. The two primary neuronal spectrin isoforms: alpha SpI Sigma*/beta SpI Sigma 2 and alpha SpII Sigma 1/beta SpII Sigma 1 are both ubiquitinated. Future work will resolve whether neuronal spectrins also contain E2-ubiquitin conjugating activity and the molecular basis for formation of ubiquitinated inclusions in neurological disorders.  相似文献   

3.
The von Hippel-Lindau tumor-suppressor protein (pVHL) forms a protein complex (VCB-Cul2) with elongin C, elongin B, Cul-2, and Rbx1, which functions as a ubiquitin-protein ligase (E3). The alpha-subunits of the hypoxia-inducible factors have been identified as targets for the VCB-Cul2 ubiquitin ligase. However, a variety of cellular defects caused by the depletion of pVHL cannot be explained solely by the ubiquitin-mediated degradation of hypoxia-inducible factor-alpha. We show here that a member of the atypical protein kinase C (PKC) group, PKClambda, is ubiquitinated by the pVHL-containing E3 enzyme. An active PKClambda mutant is ubiquitinated more extensively than wild-type PKClambda in HEK293 cells, and the ubiquitination is further enhanced by the overexpression of pVHL. The activation of wild-type PKClambda by serum stimulation of cells enhances the ubiquitination of the protein, supporting the notion that active PKClambda is preferentially ubiquitinated by VCB-Cul2 ubiquitin ligase. Furthermore, we show that PKClambda can be ubiquitinated in vitro in a cell-free ubiquitination assay using purified recombinant components including VCB-Cul2. Given the known function of aPKC in the regulation of cell polarity and cell growth, PKClambda may be a target of pVHL in its function as a tumor suppressor.  相似文献   

4.
5.
Protein ubiquitination constitutes a post-translational modification mediated by ubiquitin ligases whereby ubiquitinated substrates are degraded through the proteasomal or lysosomal pathways, or acquire novel molecular functions according to their “ubiquitin codes.” Dysfunction of the ubiquitination process in cells causes various diseases such as cancers along with neurodegenerative, auto-immune/inflammatory, and metabolic diseases. KCTD10 functions as a substrate recognition receptor for cullin-3 (CUL3), a scaffold protein in RING-type ubiquitin ligase complexes. Recently, studies by ourselves and others have identified new substrates that are ubiquitinated by the CUL3/KCTD10 ubiquitin ligase complex. Moreover, the type of polyubiquitination (e.g., K27-, K48-, or K63-chain) of various substrates (e.g., RhoB, CEP97, EIF3D, and TRIF) mediated by KCTD10 underlies its divergent roles in endothelial barrier formation, primary cilium formation, plasma membrane dynamics, cell proliferation, and immune response. Here, the physiological functions of KCTD10 are summarized and potential mechanisms are proposed.  相似文献   

6.
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare autosomal dominant neurodegenerative disease characterized by various combinations of ataxia, choreoathetosis, myoclonus, epilepsy and dementia as well as various ages of onset. We have identified a specific unstable trinucleotide repeat expansion in a gene on the short arm of chromosome 12 as the pathogenic mutation for DRPLA. We investigated how the degree of the expansion of the CAG repeat affects the clinical manifestations of DRPLA. The sizes of the expanded alleles were well correlated with the ages of onset (r = −0.6955, P < 0.001). Patients with progressive myoclonus epilepsy (PME) phenotype had larger expansions (62–79 repeats) and earlier ages of onset (onset before age 20). Furthermore, most of the patients with PME phenotype inherited their expanded alleles from their affected fathers. On the other hand, patients with non-PME phenotype showed later ages of onset (onset after age 20) and smaller expansions (54–67 repeats). When ages of onset of each clinical symptom are compared with sizes of the CAG repeat, there is again a remarkably high correlation of the sizes of CAG repeat with each of the clinical symptoms. Thus the wide variation in clinical manifestations of DRPLA can now be clearly explained based on the degree of CAG repeat expansion, which strongly indicates that the expanded alleles are intimately involved in the neuronal degeneration in dentatofugal and pallidofugal systems.  相似文献   

7.
8.
The best studied role of ubiquitination is to mark proteins for destruction by the proteasome but, in addition, it has recently been shown to promote macromolecular assembly and function, and alter protein function, thus playing a regulatory role distinct from protein degradation. Deubiquinating enzymes, the ubiquitin-processing proteases (ubps) and the ubiquitin carboxy-terminal hydrolases (uchs), remove ubiquitin from ubiquitinated substrates. We show here that the creB gene involved in carbon catabolite repression in Aspergillus nidulans encodes a functional member of the novel subfamily of the ubp family defined by the human homologue UBH1, thus implicating ubiquitination in the process of carbon catabolite repression. Members of the novel subfamily of ubps that include CreB are widespread amongst eukaryotes, with homologues present in mammals, nematodes, Drosophila and Arabidopsis, but mutations in the genes have only been identified in A. nidulans. From phenotypes of the A. nidulans mutants it is probable that this subfamily is involved in complex regulatory pathways. Mutations in the gene encoding the WD40 repeat protein CreC result in an identical phenotype, implicating both genes in this pathway.  相似文献   

9.
These studies were designed to characterize ubiquitination of the G protein-coupled TRH receptor (TRHR). TRHRs and ubiquitin coprecipitated with antibodies to either receptor or ubiquitin in Chinese hamster ovary or pituitary GHFT cells. Inhibition of the proteasome with MG-132 resulted in an accumulation of total TRHRs and the appearance of a small amount of cytosolic receptor. MG-132 caused an increase in newly synthesized receptors, detected by microscopy using a TRHR coupled to Timer, a DsRed that undergoes a spontaneous time-dependent color change. Misfolded TRHRs were particularly heavily ubiquitinated. These results show that the proteasome participates in TRHR quality control early after receptor synthesis. Under normal circumstances, most ubiquitinated TRHRs were absorbed to wheat germ agglutinin, indicating that they had undergone complex glycosylation in the Golgi apparatus. When cells were treated with tunicamycin to block glycosylation, a ladder of ubiquitinated species was detectable. Cell surface receptors, which were labeled selectively with either radioligand or antibody, showed no detectable ubiquitin modification. To determine if ubiqutination plays a role in TRH-induced receptor endocytosis, the receptor was expressed in Ts20 cells, which have a temperature-sensitive ubiquitin pathway. TRH induced a significant calcium response and rapid and extensive receptor internalization at both the permissive and nonpermissive temperatures, indicating that ligand-dependent ubiquitination of the receptor, or any other protein, is not necessary for TRHR signaling or internalization. These results show that ubiquitin modification targets misfolded receptors for degradation and suggest a possible role for ubiquitination in receptor trafficking.  相似文献   

10.
Polyglutamine (polyQ) expansions cause neurodegeneration that is associated with protein misfolding and influenced by functional properties of the host protein. The polyQ disease protein, ataxin-3, has predicted ubiquitin-specific protease and ubiquitin-binding domains, which suggest that ataxin-3 functions in ubiquitin-dependent protein surveillance. Here we investigate direct links between the ubiquitin-proteasome pathway and ataxin-3. In neural cells we show that, through its ubiquitin interaction motifs (UIMs), normal or expanded ataxin-3 binds a broad range of ubiquitinated proteins that accumulate when the proteasome is inhibited. The expression of a catalytically inactive ataxin-3 (normal or expanded) causes ubiquitinated proteins to accumulate in cells, even in the absence of proteasome inhibitor. This accumulation of ubiquitinated proteins occurs primarily in the cell nucleus in transfected cells and requires intact UIMs in ataxin-3. We further show that both normal and expanded ataxin-3 can undergo oligoubiquitination. Although this post-translational modification occurs in a UIM-dependent manner, it becomes independent of UIMs when the catalytic cysteine residue of ataxin-3 is mutated, suggesting that ataxin-3 ubiquitination is itself regulated in trans by its own de-ubiquitinating activity. Finally, pulse-chase labeling reveals that ataxin-3 is degraded by the proteasome, with expanded ataxin-3 being as efficiently degraded as normal ataxin-3. Mutating the UIMs does not alter degradation, suggesting that UIM-mediated oligoubiquitination of ataxin-3 modulates ataxin-3 function rather than stability. The function of ataxin-3 as a de-ubiquitinating enzyme, its post-translational modification by ubiquitin, and its degradation via the proteasome link this polyQ protein to ubiquitin-dependent pathways already implicated in disease pathogenesis.  相似文献   

11.
Endocytosis of the growth hormone receptor (GHR) depends on a functional ubiquitin conjugation system. A 10-amino acid residue motif within the GHR cytosolic tail (the ubiquitin-dependent endocytosis motif) is involved in both GHR ubiquitination and endocytosis. As shown previously, ubiquitination of the receptor itself is not required. In this paper ubiquitination of the GHR was used as a tool to address the question of at which stage the ubiquitin conjugation system acts in the process of GHR endocytosis. If potassium depletion was used to interfere with early stages of coated pit formation, both GHR endocytosis and ubiquitination were inhibited. Treatment of cells with methyl-beta-cyclodextrin inhibited endocytosis at the stage of coated vesicle formation. Growth hormone addition to methyl-beta-cyclodextrin-treated cells resulted in an accumulation of ubiquitinated GHR at the cell surface. Using immunoelectron microscopy, the GHR was localized in flattened clathrin-coated membranes. In addition, when clathrin-mediated endocytosis was inhibited in HeLa cells expressing a temperature-sensitive dynamin mutant, ubiquitinated GHR accumulated at the cell surface. Together, these data show that the GHR is ubiquitinated at the plasma membrane, before endocytosis occurs, and indicate that the resident time of the GHR at the cell surface is regulated by the ubiquitin conjugation system together with the endocytic machinery.  相似文献   

12.
13.
14.
An increasing number of neurodegenerative disorders have been found to be caused by expanding CAG triplet repeats that code for polyglutamine. Huntington's disease (HD) is the most common of these disorders and dentatorubral-pallidoluysian atrophy (DRPLA) is very similar to HD, but is caused by mutation in a different gene, making them good models to study. In this review, we will concentrate on the roles of protein aggregation, nuclear localization and proteolytic processing in disease pathogenesis. In cell model studies of HD, we have found that truncated N-terminal portions of huntingtin (the HD gene product) with expanded repeats form more aggregates than longer or full length huntingtin polypeptides. These shorter fragments are also more prone to aggregate in the nucleus and cause more cell toxicity. Further experiments with huntingtin constructs harbouring exogenous nuclear import and nuclear export signals have implicated the nucleus in direct cell toxicity. We have made mouse models of HD and DRPLA using an N-terminal truncation of huntingtin (N171) and full-length atrophin-1 (the DRPLA gene product), respectively. In both models, diffuse neuronal nuclear staining and nuclear inclusion bodies are observed in animals expressing the expanded glutamine repeat protein, further implicating the nucleus as a primary site of neuronal dysfunction. Neuritic pathology is also observed in the HD mice. In the DRPLA mouse model, we have found that truncated fragments of atrophin-1 containing the glutamine repeat accumulate in the nucleus, suggesting that proteolysis may be critical for disease progression. Taken together, these data lead towards a model whereby proteolytic processing, nuclear localization and protein aggregation all contribute to pathogenesis.  相似文献   

15.
The homologue of Slimb (HOS) F-box protein is a receptor of the Skp1-Cullin1-F-box protein (SCF(HOS)) E3 ubiquitin ligase, which mediates ubiquitination and degradation of beta-catenin and the inhibitor of NFkappaB, IkappaB. We found that HOS itself is an unstable protein that undergoes ubiquitination and degradation in a 26 S proteasome-dependent manner. A HOS mutant lacking the F-box that is deficient in binding to the core SCF components underwent ubiquitination less efficiently and was more stable than the wild type protein. Furthermore, ubiquitination and degradation of HOS was impaired in ts41 cells, in which the activities of Cullin-based ligases were decreased because the NEDD8 pathway was abrogated. Whereas HOS was directly ubiquitinated within the SCF(HOS) complex in vitro, the addition of phosphorylated IkappaBalpha inhibited this ubiquitination. Increasing cellular levels of HOS substrate (phosphorylated IkappaBalpha) by activating IkappaB kinase inhibited HOS ubiquitination and led to stabilization of HOS, indicating that interaction between HOS and its substrate might protect HOS from proteolysis. Taken together, our data suggest that proteolysis of HOS depends on its interaction with active components of the SCF complex and that HOS stability is regulated by a bound substrate. These findings may define a mechanism for maintaining activities of specific SCF complexes based on availability of a particular substrate.  相似文献   

16.
The process in which ubiquitin ( Ub ) conjugation is required for trafficking of integral membrane proteins into multivesicular bodies ( MVBs ) and eventual degradation in the lumen of lysosomes/vacuoles is well defined. However , Ub ‐independent pathways into MVBs are less understood. To better understand this process, we have further characterized the membrane protein Sna 3, the prototypical Ub ‐independent cargo protein sorted through the MVB pathway in yeast. We show that Sna 3 trafficking to the vacuole is critically dependent on Rsp 5 ligase activity and ubiquitination. We find Sna 3 undergoes Ub ‐dependent MVB sorting by either becoming ubiquitinated itself or associating with other ubiquitinated membrane protein substrates. In addition, our functional studies support a role for Sna 3 as an adaptor protein that recruits Rsp 5 to cargo such as the methionine transporter Mup 1, resulting in efficient Mup 1 delivery to the vacuole .  相似文献   

17.
The import of matrix proteins into peroxisomes in yeast requires the action of the ubiquitin-conjugating enzyme Pex4p and a complex consisting of the ubiquitin E3 ligases Pex2p, Pex10p and Pex12p. Together, this peroxisomal ubiquitination machinery is thought to ubiquitinate the cycling receptor protein Pex5p and members of the Pex20p family of co-receptors, a modification that is required for receptor recycling. However, recent reports have demonstrated that this machinery plays a role in additional peroxisome-associated processes. Hence, our understanding of the function of these proteins in peroxisome biology is still incomplete. Here, we identify a role for the peroxisomal ubiquitination machinery in the degradation of the peroxisomal membrane protein Pex13p. Our data demonstrate that Pex13p levels build up in cells lacking members of this machinery and also establish that Pex13p undergoes rapid degradation in wild-type cells. Furthermore, we show that Pex13p is ubiquitinated in wild-type cells and also establish that Pex13p ubiquitination is reduced in cells lacking a functional peroxisomal E3 ligase complex. Finally, deletion of PEX2 causes Pex13p to build up at the peroxisomal membrane. Taken together, our data provide further evidence that the role of the peroxisomal ubiquitination machinery in peroxisome biology goes much deeper than receptor recycling alone.  相似文献   

18.
The Rad23/Rad4 nucleotide excision repair (NER) protein complex functions at an early stage of the NER reaction, possibly promoting the recognition of damaged DNA. Here we show that Rad4 protein is ubiquitinated and degraded in response to ultraviolet (UV) radiation, and identify a novel cullin-based E3 ubiquitin ligase required for this process. We also show that this novel ubiquitin ligase is required for optimal NER. Our results demonstrate that optimal NER correlates with the ubiquitination of Rad4 following UV radiation, but not its subsequent degradation. Furthermore, we show that the ubiquitin-proteasome pathway (UPP) regulates NER via two distinct mechanisms. The first occurs independently of de novo protein synthesis, and requires Rad23 and a nonproteolytic function of the 19S regulatory complex of the 26S proteasome. The second requires de novo protein synthesis, and relies on the activity of the newly identified E3 ubiquitin ligase. These studies reveal that, following UV radiation, NER is mediated by nonproteolytic activities of the UPP, via the ubiquitin-like domain of Rad23 and UV radiation-induced ubiquitination of Rad4.  相似文献   

19.
Origin recognition complex (ORC) is highly dynamic, with several ORC subunits getting posttranslationally modified by phosphorylation or ubiquitination in a cell cycle-dependent manner. We have previously demonstrated that a WD repeat containing protein ORC-associated (ORCA/LRWD1) stabilizes the ORC on chromatin and facilitates pre-RC assembly. Further, ORCA levels are cell cycle-regulated, with highest levels during G1, and progressively decreasing during S phase, but the mechanism remains to be elucidated. We now demonstrate that ORCA is polyubiquitinated in vivo, with elevated ubiquitination observed at the G1/S boundary. ORCA utilizes lysine-48 (K48) ubiquitin linkage, suggesting that ORCA ubiquitination mediates its regulated degradation. Ubiquitinated ORCA is re-localized in the form of nuclear aggregates and is predominantly associated with chromatin. We demonstrate that ORCA associates with the E3 ubiquitin ligase Cul4A-Ddb1. ORCA is ubiquitinated at the WD40 repeat domain, a region that is also recognized by Orc2. Furthermore, Orc2 associates only with the non-ubiquitinated form of ORCA, and Orc2 depletion results in the proteasome-mediated destabilization of ORCA. Based on the results, we suggest that Orc2 protects ORCA from ubiquitin-mediated degradation in vivo.  相似文献   

20.
Extracellular signal-regulated kinase 3 (ERK3) is an unstable mitogen-activated protein kinase homologue that is constitutively degraded by the ubiquitin-proteasome pathway in proliferating cells. Here we show that a lysineless mutant of ERK3 is still ubiquitinated in vivo and requires a functional ubiquitin conjugation pathway for its degradation. Addition of N-terminal sequence tags of increasing size stabilizes ERK3 by preventing its ubiquitination. Importantly, we identified a fusion peptide between the N-terminal methionine of ERK3 and the C-terminal glycine of ubiquitin in vivo by tandem mass spectrometry analysis. These findings demonstrate that ERK3 is conjugated to ubiquitin via its free NH(2) terminus. We found that large N-terminal tags also stabilize the expression of the cell cycle inhibitor p21 but not that of substrates ubiquitinated on internal lysine residues. Consistent with this observation, lysineless p21 is ubiquitinated and degraded in a ubiquitin-dependent manner in intact cells. Our results suggests that N-terminal ubiquitination is a more prevalent modification than originally recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号