首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resolvase protein from the transposon Tn21   总被引:5,自引:0,他引:5  
Summary The tac promoter was inserted into Tn21 upstream of the tnpR gene and the resultant plasmid was used to generate substantial amounts of resolvase. This protein was purified to homogeneity. The protein was characterized by amino acid sequence studies (which showed that an open-reading frame previously identified by DNA sequencing had been correctly assigned to the tnpR gene) and by molecular weight measurements (which demonstrated that the only active for of the protein in solution was dimeric). Pure Tn21 resolvase catalysed site-specific recombinations between directly repeated res sites from Tn21 or Tn1721 but not from Tn3 nor on inverted res sites from Tn21.  相似文献   

2.
Summary Insertion of Tn3 generates a five base pair repeat of a nucleotide sequence indigenous to the recipient genome. Tn3 promoted deletions extend precisely from the Tn3 terminus and remove one of the 5 base pair repeats while not affecting the ability of Tn3 to subsequently undergo translocation. A direct repeat of a 10 bp sequence located in the Tn3 termini occurs internally within Tn3 and may affect the orientation of insertion.  相似文献   

3.
4.
F Heffron  B J McCarthy  H Ohtsubo  E Ohtsubo 《Cell》1979,18(4):1153-1163
The complete nucleotide sequence of the transposon Tn3 and of 20 mutations which affect its transposition are reported. The mutations, generated in vitro by random insertion of synthetic restriction sites, proved to contain small duplications or deletions immediately adjacent to the new restriction site. By determining the phenotype and DNA sequence of these mutations we were able to generate an overlapping phenotypic and nucleotide map. This 4957 bp transposon encodes three polypeptides which account for all but 350 bp of its total coding capacity. These proteins are the transposase, a high molecular weight polypeptide (1015 amino acids) encoded by the tnpA gene; the Tn3-specific repressor, a low molecular weight polypeptide (185 amino acids) encoded by the tnpR gene; and the 286 amino acid beta-lactamase. The 38 bp inverted repeats flanking Tn3 appear to be absolutely required in cis for Tn3 to transpose. Genetic data suggest that Tn3 contains a third site (Gill et al., 1978), designated IRS (internal resolution site), whose absence results in the insertion of two complete copies of Tn3 as direct repeats into the recipient DNA. We suggest that these direct repeats of complete copies of Tn3 are intermediates in transposition, and that the IRS site is required for recombination and subsequent segregation of the direct repeats to leave a single copy of Tn3 (Gill et al., 1978). A 23 nucleotide sequence within the amino terminus of the transposase which shares strong sequence homology with the inverted repeat may be the internal resolution site.  相似文献   

5.
Tn951: A new transposon carrying a lactose operon   总被引:9,自引:0,他引:9  
Summary A new transposon, Tn951, is described, which derives from plasmid pGC1, originally isolated from Yersinia enterocolitica. Tn951 is 16.6 kb long and presumably flanked by small inverted repeats. It carries the lac genes i, z and y. This lac system is homologous to the E. coli lac operon. However, homology is restricted to 5.6 kb. The DNA sequences surrounding the lac operons on Tn951 and E. coli are nonhomologous. This leads to speculations about the origin of the E. coli lac operon itself.  相似文献   

6.
The transposons Tn21, Tn501, and Tn1721 are related to Tn3. Transposition-deficient mutants (tnpA) of these elements were used to test for complementation of transpostion. Transposition of tnpA mutants of Tn501 and Tn1721 was restored by the presence in trans of Tn21, Tn501, and Tn1721, but transposition of a tnpA mutant of Tn21 was restored in trans only by Tn21 itself. Tn3 did not complement transposition of Tn21, Tn501, or Tn1721, and these elements did not complement transposition of Tn3.  相似文献   

7.
DNA sequences that encode the tnpR genes and internal resolution (res) sites of transposons Tn21 and Tn501, and the res site and the start of the tnpR gene of Tn1721 have been determined. There is considerable homology between all three sequences. The homology between Tn21 and Tn501 extends further than that between Tn1721 and Tn501 (or Tn21), but in the homologous regions, Tn1721 is 93% homologous with Tn501, while Tn21 is only 72-73% homologous. The tnpR genes of Tn21 and Tn501 encode proteins of 186 amino acids which show homology with the tnpR gene product of Tn3 and with other enzymes that carry out site-specific recombination. However, in all three transposons, and in contrast to Tn3, the tnpR gene is transcribed towards tnpA gene, and the res site is upstream of both. The res site of Tn3 shows no obvious homology with the res regions of these three transposons. Just upstream of the tnpR gene and within the region that displays common homology between the three elements, there is a 50 bp deletion in Tn21, compared to the other two elements. A TnpR- derivative of Tn21 was complemented by Tn21, Tn501 and Tn1721, but not by Tn3.  相似文献   

8.
Transposons are widely employed as tools for gene disruption. Ideally, they should display unbiased insertion behavior, and incorporate readily into any genomic DNA to which they are exposed. However, many transposons preferentially insert at specific nucleotide sequences. It is unclear to what extent such bias affects their usefulness as mutagenesis tools. Here, we examine insertion site specificity and global insertion behavior of two mini-transposons previously used for large-scale gene disruption in Saccharomyces cerevisiae: Tn3 and Tn7. Using an expanded set of insertion data, we confirm that Tn3 displays marked preference for the AT-rich 5 bp consensus site TA[A/T]TA, whereas Tn7 displays negligible target site preference. On a genome level, both transposons display marked non-uniform insertion behavior: certain sites are targeted far more often than expected, and both distributions depart drastically from Poisson. Thus, to compare their insertion behavior on a genome level, we developed a windowed Kolmogorov–Smirnov (K–S) test to analyze transposon insertion distributions in sequence windows of various sizes. We find that when scored in large windows (>300 bp), both Tn3 and Tn7 distributions appear uniform, whereas in smaller windows, Tn7 appears uniform while Tn3 does not. Thus, both transposons are effective tools for gene disruption, but Tn7 does so with less duplication and a more uniform distribution, better approximating the behavior of the ideal transposon.  相似文献   

9.
The nucleotide sequence of 1200 bp from the unique region of transposon Tn5 containing the neomycin phosphotransferase gene (neo) was determined, and the location of the neo gene was identified by deletion mutants in a translational reading frame of 792 bp. The derived gene product, an aminoglycoside 3′-phosphotransferase (APH) II, consists of 264 amino acid residues and has a calculated Mr of 29053. Its amino acid sequence shows sequence homologies to the APH type I enzyme coded for by transposon Tn903 (Oka et al., 1981).  相似文献   

10.
Summary Various molecules generated by transposition of the lactose transposon Tn951 from plasmid pGC1 to plasmid RP1 were examined by DNA heteroduplex and restriction endonuclease analysis. Tn951 was found to transpose to at least eight different sites on RP1 in both possible orientations. A coordinate system for the lactose transposon Tn951 is constructed.  相似文献   

11.
12.
J Amemura  H Ichikawa  E Ohtsubo 《Gene》1990,88(1):21-24
A series of mutant terminal inverted repeats (IRs), having 2 bp substitutions at various sites within the 38-bp IR sequence of the ampicillin-resistance transposon Tn3, were tested for transposition immunity to Tn3. Mutations within region 1-10 in the IR did not affect transposition immunity, while mutations within region 13-38 inactivated the immunity function. These two regions corresponded to domain A which was not bound specifically by Tn3 transposase and to domain B which was bound by the transposase, respectively. This indicates that specific binding of transposase to domain B within the IR sequence is responsible for transposition immunity.  相似文献   

13.
The chloramphenicol-resistance transposon Tn4451 undergoes precise conjugative deletion from its parent plasmid piP401 in Clostridium perfringens and precise spontaneous excision from multicopy plasmids in Escherichia coli. The complete nucleotide sequence of the 6338 bp transposon was determined and it was found to encode six genes. Genetic analysis demonstrated that the largest Tn4451-encoded gene, tnpX, was required for the spontaneous excision of the transposon in both E. coli and C. perfringens, since a Tn4451 derivative that lacked a functional tnpX gene was completely stable in both organisms. Because the ability of this derivative to excise was restored by providing the tnpX gene on a compatible plasmid, it was concluded that this gene encoded a trans-acting site-specific recombinase. Allelic exchange was used to introduce the tnpXΔ allele onto plP401 and it was shown that TnpX was also required for the conjugative excision of Tn4451 in C. perfringens. It was also shown by hybridization and polymerase chain reaction (PCR) studies that TnpX-mediated transposon excision resulted in the formation of a circular form of the transposon. The TnpX recombinase was unique because it potentially contained the motifs of two independent site-specific recombinase families, namely the resolvase/invertase and integrase families. Sequence analysis indicated that the resolvase/invertase domain of TnpX was likely to be involved in the excision process by catalysing the formation of a 2bp staggered nick on either side of the GA dinucleotide located at the ends of the transposon and at the junction of the circular form. The other Tn4451-encoded genes include tnpZ, which appears to encode a second potential site-specific recombinase. This protein has similarity to plasmid-encoded Mob/Pre proteins, which are involved in plasmid mobilization and multimer formation. Located upstream of the tnpZ gene was a region with similarity to the site of interaction of these mobilization proteins.  相似文献   

14.
Summary The 10.7 kilobase (kb) tetracycline resistance transposons Tn1721 and Tn1771, isolated from disparate sources, are completely homologous on the basis of heteroduplex analyses. Both transposable elements are capable of forming multiple duplications of a 5.3 kb portion encompassing the resistance genes (tet region). A model accounting for both, recA-independent translocation and recA-dependent amplification, postulates two direct and one inverted repeat as essential constituents of the transposons. DNA sequence analyses of Tn1721 and Tn1771 have substantiated this model. They demonstrated three identical 38 base pair repeats identically in both transposons dividing them into a minor transposon and a tet region. Identical sequences of at least 87 base pairs providing recombination hot spots for gene duplication have been found at the ends of the repetitious tet region. Translocation of Tn1721 and Tn1771 generates five base pair direct repeats at the respective sites of insertion. On the basis of the heteroduplex molecules and sequences analyzed the two transposons are identical.To Professor Wolfram Heumann on the occasion of his 65th birthday  相似文献   

15.
N Kleckner 《Cell》1979,16(4):711-720
The sequences of insertions of the translocatable tetracycline-resistance element Tn10 into the repressor (cl) gene of bacteriophage lambda have been analyzed. Each insertion contains the same discrete set of Tn10 sequences flanked by a direct repetition of a 9 bp cl-gene sequence. The flanking repititions are generated by duplication of information present only in the target DNA molecule rather than by a Campbell-type recombination event between one 9 bp sequence on the target DNA and a second one provided on the incoming element. The repetitions do not contain genetic or structural information important for translocation. A genetically constructed Tn10 insertion which lacks flanking repetitions is fully functional in translocation to a new position. Tn10 insertions cluster at preferred positions along a target DNA (Kleckner et al., 1979). Sequence analysis shows that four independently isolated cl::Tn10 insertions occur at identical positions in the cl gene. We speculate that homology between Tn10 and its target, at some distance from the site of the actual recombination event, could be relevant to the preference of Tn10 for particular insertion sites.  相似文献   

16.
Genetic organization of transposon Tn10   总被引:60,自引:0,他引:60  
Transposon Tn10 is 9300 bp in length, with 1400 bp inverted repeats at its ends. The inverted repeats are structurally intact IS-like sequences (Ross et al., 1979). Analysis of deletion mutants and structural variants of Tn10, reported below, shows that the two IS10 segments contain all of the Tn10-encoded genetic determinants, both sites and functions, that are required for transposition. Furthermore, the two repeats (IS10-Right and IS10-Left) are not functionally equivalent: IS10-Right is fully functional and is capable by itself of promoting normal levels of Tn10 transposition; IS10-Left functions only poorly by itself, promoting transposition at a very low level when IS10-Right is inactivated. Complementation analysis shows that IS10-Right encodes at least one function, required for Tn10 transposition, which can act in trans and which works at the ends of the element. Also, all of the sites specifically required for normal Tn10 transposition have been localized to the outermost 70 bp at each end of the element; there is no evidence that specific sites internal to the element play an essential role. Finally, Tn10 modulates its own transposition in such a way that transposition-defective point mutants, unlike deletion mutants, are not complemented by functions provided in trans; and wild-type Tn10, unlike deletion mutants, is not affected by functions provided in trans from a "high hopper" Tn10 element.  相似文献   

17.
《Plasmid》1987,18(1):35-45
Transposon Tn7 insertions in the origin of vegetative replication (oriV) result in host range mutants of the promiscuous IncP-1 plasmids R18 and R68 which affect plasmid replication in Escherichia coli but not in Pseudomonas aeruginosa. The sites of these insertions have been analyzed by DNA sequence analysis. In two mutants, the insertions generated direct duplications of 5′GTATT3′ at the target site which included the first base at the 5′ end of the fourth 17-bp direct repeat in oriV. In a third mutant the duplication of 5′GACAC3′ also involved the same direct repeat also at the 5′ end but contiguous with the previous duplication. DNA sequence analysis of another Tn7-induced host range mutant of R18, characterized by reduced conjugational transmissibility into P. stutzeri while retaining normal transmissibility within P. aeruginosa, showed that the insertion generated a 474-bp deletion which brought the insertion 20 bp 5′ to the 17-bp direct repeat between oriV and the oxytetracycline hydrochloride-resistant gene. The analysis of the DNA sequence data at the site of the Tn7 insertions shows that particular segments of the DNA sequence in oriV are differentially required for the replication of these plasmids in different bacterial hosts and thus of importance to the promiscuity of these plasmids.  相似文献   

18.
The resolvases from the transposons Tn3 and Tn21 are homologous proteins but they possess distinct specificities for the DNA sequence at their respective res sites. The DNA binding domain of resolvase contains an amino acid sequence that can be aligned with the helix-turn-helix motif of other DNA binding proteins. Mutations in the gene for Tn21 resolvase were made by replacing the section of DNA that codes for the helix-turn-helix with synthetic oligonucleotides. Each mutation substituted one amino acid in Tn21 resolvase with either the corresponding residue from Tn3 resolvase or a residue that lacks hydrogen bonding functions. The ability of these proteins to mediate recombination between res sites from either Tn21 or Tn3 was measured in vivo and in vitro. With one exception, where a glutamate residue had been replaced by leucine, the activity of these mutants was similar to that of wild-type Tn21 resolvase. A further mutation was made in which the complete recognition helix of Tn21 resolvase was replaced with that from Tn3 resolvase. This protein retained activity in recombining Tn21 res sites, though at a reduced level relative to wild-type; the reduction can be assigned entirely to weakened binding to this DNA. Neither this mutant nor any other derivative of Tn21 resolvase had any detectable activity for recombination between res sites from Tn3. The exchange of this section of amino acid sequence between the two resolvases is therefore insufficient to alter the DNA sequence specificity for recombination.  相似文献   

19.
Excision and integration of Tn 1545 occur by reciprocal site-specific recombination between 6 (or 7)bp variable sequences present in the recombining attachment (atf) sites and designated overlap regions. We devised an assay for Tn1545 transposition in which derivatives containing the cis-acting transposition sequences (atfTn 1545) integrate into a target replicon when complemented in trans by the transposon-encoded integrase Int-Tn. This assay was used to determine the characteristics of the DNA sequence that influence target site selection. Characterization of several integration sites indicated that a 20 bp segment, designated attB, contains the sequences required for target activity. It also appeared that (i) the target activity depends upon the extent of homology between the 7bp segments flanking the overlap regions in attB and attTn1545, and (ii) the degree of homology between the two recombining overlap regions does not affect the level of target activity and has no influence on integration orientation.  相似文献   

20.
A 3.5-kb region of plasmid pTF-FC2, which contains a transposon-like element designated Tn5467, has been sequenced, and its biological activity has been investigated. The transposon is bordered by two 38-bp inverted repeat sequences which have sequence identity in 37 of 38 and in 38 of 39 bp to the tnpA distal and tnpA proximal inverted repeats of Tn21, respectively. Within these borders, open reading frames with amino acid similarity to a glutaredoxin-like protein, a MerR regulatory protein, and a multidrug-resistant-membrane transport-like protein were found. The gene for the glutaredoxin-like protein was expressed in Escherichia coli and enabled growth of a glutathione-requiring E. coli trxA gshA mutant on minimal medium and the reduction of methionine sulfoxide to methionine. In addition, there were two regions which, when translated, had homology to 85% of the N-terminal region of the Tn21 resolvase (tnpR) and to 15% of the C terminus of the Tn21 transposase (tnpA). A region containing res-like sites was located immediately upstream of the partial tnpR gene. Neither the partial transposase nor the resolvase genes of Tn5467 were biologically active, but Tn5467 was transposed and resolved when the Tn21 transposase and resolvase were provided in trans. Tn5467 appears to be a defective transposon which belongs to the Tn21 subgroup of the Tn3 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号