首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycolytic enzyme interactions with tubulin and microtubules   总被引:2,自引:0,他引:2  
Interactions of the glycolytic enzymes glucose-6-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, enolase, phosphoglycerate mutase, phosphoglycerate kinase, pyruvate kinase, lactate dehydrogenase type-M, and lactate dehydrogenase type-H with tubulin and microtubules were studied. Lactate dehydrogenase type-M, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase, and aldolase demonstrated the greatest amount of co-pelleting with microtubules. The presence of 7% poly(ethylene glycol) increased co-pelleting of the latter four enzymes and two other enzymes, glucose-6-phosphate isomerase, and phosphoglycerate kinase with microtubules. Interactions also were characterized by fluorescence anisotropy. Since the KD values of glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase for tubulin and microtubules were all found to be between 1 and 4 microM, which is in the range of enzyme concentration in cells, these enzymes are probably bound to microtubules in vivo. These observations indicate that interactions of cytosolic proteins, such as the glycolytic enzymes, with cytoskeletal components, such as microtubules, may play a structural role in the formation of the microtrabecular lattice.  相似文献   

2.
In order to provide information on the relative binding characteristics of glycolytic enzymes, the effect of fructose-1,6-bisphosphate (FBP) on the release of glycolytic enzymes from cultured pig kidney cells treated with digitonin has been studied. In the absence of FBP, a differential release of these enzymes was observed, with the order of retention being aldolase greater than glyceraldehyde-3-phosphate dehydrogenase greater than glucosephosphate isomerase, triosephosphate isomerase, phosphoglycerokinase, phosphoglucomutase, lactate dehydrogenase, enolase, pyruvate kinase and phosphofructokinase. In the presence of fructose-1,6-bisphosphate, the release of aldolase was considerably enhanced, whereas the release of phosphofructokinase and pyruvate kinase was decreased by this metabolite. No significant alterations in the rate of release of the other enzymes was caused by FBP. These data have been discussed in relation to their contribution to the knowledge of the degree of association and order of binding between glycolytic enzymes and the cytoplasmic matrix.  相似文献   

3.
The activities of glycolytic and other enzymes of carbohydrate metabolism were measured in free-living and parasitic stages of the rabbit stomach worm Obeliscoides cuniculi. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucomutase, hexokinase, glucosephosphate isomerase, phosphofructokinase, aldolase, triosephosphate isomerase, α-glycerophosphatase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenol pyruvate carboxykinase, lactate dehydrogenase, alcohol dehydrogenase, and glucose-6-phosphatase activities were present in worms recovered 14, 20 and 190 days postinfection.The presence of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, and glucose-6-phosphatase indicates the possible function of a pentose phosphate pathway and a capacity for gluconeogenesis, respectively, in these worms.The ratio of pyruvate kinase (PK) to phosphoenol pyruvate carboxykinase (PEPCK) less than I in parasitic stages suggests that their most active pathway is that fixing CO2 into phosphoenol pyruvate to produce oxaloacetate.Low levels of glucose-6-phosphate dehydrogenase, triosephosphate isomerase, PEPCK and PK were recorded in infective third-stage larvae stored at 5°C for 5 and 12 mos. The ratio of PK to PEPCK greater than 1 indicates that infective larvae preferentially utilize a different terminal pathway than the parasitic stages.  相似文献   

4.
As an aid to the elucidation of the mechanism of activation of glycolysis upon fertilization, the activity and the distribution of the enzymes concerned were measured in unfertilized and fertilized eggs of Hemicentrotus pulcherrimus and Pseudocentrotus depressus. The enzymes investigated were phosphorylase, exo-1,4-α-glucosidase, hexokinase, phosphoglucomutase, glucose-6-phosphate dehydrogenase, glucosephosphate isomerase, 6-phosphofructokinase, hexosediphosphatase, fructose-bisphosphate aldolase, pyruvate kinase, and lactate dehydrogenase.Phosphorylase and pyruvate kinase were the enzymes which were activated upon fertilization. Glucose-6-phosphate dehydrogenase and a part of aldolase changed their distribution from the particulate to the soluble fraction upon fertilization. Advantages of enzyme activation over changes in enzyme distribution upon fertilization were discussed as a mechanism for the fertilization-induced activation of glycolysis.  相似文献   

5.
The 11.5-kDa Zn(2+)-binding protein (ZnBP) was covalently linked to Sepharose. Affinity chromatography with a cytosolic subfraction from liver resulted in purification of a predominant 38-kDa protein. In comparable experiments with brain cytosol a 39-kDa protein was enriched. The ZnBP-protein interactions were zinc-specific. Both proteins were identified as fructose-1,6-bisphosphate aldolase. Experiments with crude cytosol showed zinc-specific interaction of additional enzymes involved in carbohydrate metabolism. From liver cytosol greater than 90% of the following enzymes were specifically retained: aldolase, phosphofructokinase-1, hexokinase/glucokinase, glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase. Glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, and most of triosephosphate isomerase remained unbound. From L-type pyruvate kinase only the phosphorylated form seems to interact with ZnBP. Using brain cytosol hexokinase, phosphofructokinase-1, and aldolase were completely bound to the affinity column, whereas glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, pyruvate kinase, and most of triose-phosphate isomerase remained unbound. The behavior of glucose-6-phosphate dehydrogenase and glycerol-3-phosphate dehydrogenase from this tissue could not be followed. A possible function of ZnBP in supramolecular organization of carbohydrate metabolism is proposed.  相似文献   

6.
Partition equilibrium experiments have been used to characterize the interactions of erythrocyte ghosts with four glycolytic enzymes, namely aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase and lactate dehydrogenase, in 5 mM sodium phosphate buffer (pH 7.4). For each of these tetrameric enzymes a single intrinsic association constant sufficed to describe its interaction with erythrocyte matrix sites, the membrane capacity for the first three enzymes coinciding with the band 3 protein content. For lactate dehydrogenase the erythrocyte membrane capacity was twice as great. The membrane interactions of aldolase and glyceraldehyde-3-phosphate dehydrogenase were mutually inhibitory, as were those involving either of these enzymes and lactate dehydrogenase. Although the binding of phosphofructokinase to erythrocyte membranes was inhibited by aldolase, there was a transient concentration range of aldolase for which its interaction with matrix sites was enhanced by the presence of phosphofructokinase. In the presence of a moderate concentration of bovine serum albumin (15 mg/ml) the binding of aldolase to erythrocyte ghosts was enhanced in accordance with the prediction of thermodynamic nonideality based on excluded volume. At higher concentrations of albumin, however, the measured association constant decreased due to very weak binding of the space-filling protein to either the enzyme or the erythrocyte membrane. The implications of these findings are discussed in relation to the likely subcellular distribution of glycolytic enzymes in the red blood cell.  相似文献   

7.
The intracellular distribution of the glycolytic enzymes hexokinase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase and the pyruvate kinase isoenzymes type M1 and type M2 within unfertilized hen eggs was studied. Most of glycolytic enzyme activities were found in the yolk fraction; 8-24% of total glycolytic enzyme activities were found in the vitelline membrane fraction. However, the specific activities of these enzymes in the vitelline membrane fraction are 19-72-fold higher (U/mg protein) and 45-178-fold more concentrated (U/g wet weight) than in the yolk fraction. The study of intracellular localization of pyruvate kinase isoenzymes shows that the blastodisc, latebra and vitelline membrane contain only pyruvate kinase type M2, whereas pyruvate kinase types M1 and M2 are found in the egg yolk. The exclusive occurrence of pyruvate kinase type M2 in the blastodisc is consistent with the concept that this isoenzyme is involved in the cell proliferation. The heterogeneous distribution of the glycolytic enzymes hexokinase, glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase, and the heterogeneous localization of the pyruvate kinase isoenzymes types M1 and M2 indicate that glycolysis is distributed heterogeneously within the unfertilized hen egg cell.  相似文献   

8.
The presence of glycolytic enzymes and a GLUT-1-type glucose transporter in rod and cone outer segments was determined by enzyme activity assays, glucose uptake measurements, Western blotting, and immunofluorescence microscopy. Enzyme activities of six glycolytic enzymes including hexokinase, phosphofructokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, and lactate dehydrogenase, were found to be present in purified rod outer segment (ROS) preparations. Immunofluorescence microscopy of bovine and chicken retina sections labeled with monoclonal antibodies against glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and lactate dehydrogenase have confirmed that these enzymes are present in rod and cone outer segments and not simply contaminants from the inner segments or other cells. Rod outer segments were also found to contain glucose transport activity as detected by 3-O-[14C]methylglucose uptake and exchange. The glucose transporter had a Km of 6.3 mM and a Vmax of 0.15 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for net uptake and a Km of 29 mM and a Vmax of 1.06 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for equilibrium exchange. These Km values for net uptake and equilibrium exchange are similar to values obtained for human red blood cells and are characteristic of GLUT-1-type glucose transporter. The transport was inhibited by both cytochalasin B and phloretin. Western blot analysis and immunofluorescence microscopy using type-specific glucose transporter antibodies indicated that both rod and cone outer segment plasma membranes have a GLUT-1 glucose transporter of Mr 45K as found in red blood cells and brain microsomal membranes. Solid-phase radioimmune competitive inhibition studies indicated that rod outer segment plasma membranes contained 15% the number of glucose transporters found in human red blood cell membranes and had an estimated density of 400 glucose transporter per micron2 of plasma membrane. These studies support the view that outer segments can generate energy in the form of ATP and GTP by anaerobic glycolysis to supply at least some of the energy requirements for phototransduction and other metabolic processes.  相似文献   

9.
ABSTRACT. The presence of 14 enzymes was investigated using purified spores of the microsporidian Nosema grylli from fat body of the crickets Gryllus bimaculatus . Glucose 6-phosphate dehydrogenase (EC 1.1.1.49), phosphoglucomutase (EC 5.4.2.2), phosphoglucose isomerase (EC 5.3.1.9), fructose 6-phosphate kinase (EC 2.7.1.11), aldolase (EC 4.1.2.13), 3-phosophoglycerate kinase (EC 2.7.2.3), pyruvate kinase (EC 2.7.1.40) and glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) were detected with activities of 15 ± 1, 7 ± 1, 1,549 ± 255, 10 ± 1, 5 ± 1, 16 ± 4, 6 ± 1 and 16 ± 2 nmol/min. mg protein, respectively. Hexokinase (EC 2.7.1.1), NAD-dependent malate dehydrogenase (EC 1.1.1.37), malic enzyme (EC 1.1.1.40), lactate dehydrogenase (EC 1.1.1.27), alcohol dehydrogenase (EC 1.1.1.1) and succinate dehydrogenase (EC 1.3.99.1) were not detectable. These results suggest the catabolism of carbohydrates in microsporidia occurs via the Embden-Meyerhof pathway. Glycerol 3-phosphate dehydrogenase may reoxidize NADH which is produced by glyceraldehyde 3-phosphate dehydrogenase in glycolysis.  相似文献   

10.
The activity of aldolase, glyceraldehyde-3-phosphate dehydrogenase, 3-phospho-glycerate kinase, pyruvate phosphokinase, malic dehydrogenase, glutamic-oxalacetic transaminase was studied in extracts of green and streptomycin- or erythromycin-depigmented cells ofEuglena gracilis var.bacillaris obtained by the freezing technique. The presence of lactic dehydrogenase acting with DPN, of glutamic dehydrogenase and of glutamicpyruic-transaminase was not demonstrated.  相似文献   

11.
Leaf water potential was decreased by withholding irrigation to provide three levels of stress described as mild ({ie69-1}) moderate ({ie69-2}) and severe ({ie69-3}). The specific activity of NADP linked glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, aldolase, phosphogluco-isomerase and RuBP carboxylase decreased under mild stress, but the activity of phosphoglucomutase showed an increase whilst ribulose-5-phosphate kinase was least affected. With further decrease in water potential, the activity of NADP linked glyceraldehyde-3-phosphate dehydrogenase and aldolase showed a decrease, whereas, the activities of fructose-1,6-bisphosphatase, phosphoglycerate kinase, phosphogulcomutase and RuBP carboxylase increased. Net CO2 fixation decreased sharply with stress, whereas, respiration and photorespiration increased in moderate stress, but decreased under severe stress. Stomatal resistance also increased with decrease in water potential. It seems that in vitro enzyme activities of PCR cycle are not responsible for decreased photosynthesis in pigeonpea under short term water stress.  相似文献   

12.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

13.
Soluble enzymes were immobilized and visualized by polyacrylamide gel slabs, impregnated with the incubation medium including auxiliary enzymes. The method has several advantages over existing techniques which make use of gel films or a semipermeable membrane. The diffusion of tissue compounds is effectively limited, while auxiliary enzymes may be operative. Moreover the viscosity of the medium is temperature-independent so that the incubation temperature can be varied. To demonstrate the suitability of the method glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, hexokinase, phosphoglucomutase and aldolase were visulaized in human or rat skeletal muscle. Cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase were both visualized in the absence of added NAD+ and menadione. For the visualization of ATP producint enzymes, like creatine kinase and pyruvate kinase, the method is not suitable.  相似文献   

14.
Biochemistry of Coxiella burnetii: Embden-Meyerhof pathway   总被引:6,自引:1,他引:5       下载免费PDF全文
Purified preparations of Coxiella burnetii were examined for enzymes of the glycolytic pathway. Glucose-phosphate isomerase, fructose-1,6-diphosphatase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase were shown to be present in C. burnetii extracts. Heat-killed C. burnetii purified with normal yolk sacs demonstrated no activity after disruption. Aldolase was shown to be of the class II type by complete inhibition of activity in the presence of 8 x 10(-3)m ethylenediaminetetraacetic acid. The host enzyme activity (normal and infected yolk sacs) was not affected by the same treatment. When cellulose acetate electrophoresis was performed on the extracts, aldolase from both normal and infected yolk sacs exhibited five isozyme bands, whereas aldolase from the C. burnetii extract appeared as a single band.  相似文献   

15.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

16.
Summary Soluble enzymes were immobilized and visualized by polyacrylamide gel slabs, impregnated with the incubation medium including auxiliairy enzymes. The method has several advantages over existing techniques which make use of gel films or a semipermeable membrane. The diffusion of tissue compounds is effectively limited, while auxiliary enzymes may be operative. Moreover the viscosity of the medium is temperature-independent so that the incubation temperature can be varied.To demonstrate the suitability of the method glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, hexokinase, phosphoglucomutase and aldolase were visualized in human or rat skeletal muscle. Cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase were both visualized in the absence of added NAD+ and menadione.For the visualization of ATP producing enzymes, like creatine kinase and pyruvate kinase, the method is not suitable.  相似文献   

17.
The activity of some enzymes of intermediary metabolism, including enzymes of glycolysis, the hexose monophosphate shunt, and polyol cryoprotectant synthesis, were measured in freeze-tolerant Eurosta solidaginis larvae over a winter season and upon entry into pupation. Flexible metabolic rearrangement was observed concurrently with acclimatization and development. Profiles of enzyme activities related to the metabolism of the cryoprotectant glycerol indicated that fall biosynthesis may occur from two possible pathways: 1. glyceraldehyde-phosphate glyceraldehyde glycerol, using glyceraldehyde phosphatase and NADPH-linked polyol dehydrogenase, or 2. dihydroxyacetonephosphate glycerol-3-phosphate glycerol, using glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. Clearance of glycerol in the spring appeared to occur by a novel route through the action of polyol dehydrogenase and glyceraldehyde kinase. Profiles of enzyme activities associated with sorbitol metabolism suggested that this polyol cryoprotectant was synthesized from glucose-6-phosphate through the action of glucose-6-phosphatase and NADPH-linked polyol dehydrogenase. Removal of sorbitol in the spring appeared to occur through the action of sorbitol dehydrogenase and hexokinase. Glycogen phosphorylase activation ensured the required flow of carbon into the synthesis of both glycerol and sorbitol. Little change was seen in the activity of glycolytic or hexose monophosphate shunt enzymes over the winter. Increased activity of the -glycerophosphate shuttle in the spring, indicated by greatly increased glycerol-3-phosphate dehydrogenase activity, may be key to removal and oxidation of reducing equivalents generated from polyol cryoprotectan catabolism.Abbreviations 6PGDH 6-Phosphogluconate dehydrogenase - DHAP dihydroxy acetone phosphate - F6P fructose-6-phosphate - F6Pase fructose-6-phospha-tase - FBPase fructose-bisphosphatase - G3P glycerol-3-phosphate - G3Pase glycerol-3-phosphate phophatase - G3PDH glycerol-3-phosphate dehydrogenase - G6P glucose-6-phosphate - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - GAK glyceraldehyde kinase - GAP glyceraldehyde-3-phosphate - GAPase glyceraldehyde-3-phosphatase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glycerol dehydrogenase - GPase glycogen phosphorylase - HMS hexose monophosphate shunt - LDH lactate dehydrogenase - NADP-IDH NADP+-dependent isocitrate dehydrogenase - PDHald polyol dehydrogenase, glyceraldehyde activity - PDHgluc polyol dehydrogenase, glucose activity - PFK phosphofructokinase - PGI phosphoglucoisomerase - PGK phosphoglycerate kinase - PGM phosphoglucomutase - PK pyruvate kinase - PMSF phenylmethylsulfonylfluoride - SoDH sorbitol dehydrogenase - V max maximal enzyme activity - ww wet weight  相似文献   

18.
Summary The activity of 13 cytoplasmic enzymes has been determined in fibroblast extracts from 9 triploid and 13 control lines. The results show a high activity for 2 X-linked enzymes, glucose 6-phosphate dehydrogenase and phosphoglycerate kinase. These data, together with cytogenetic observations, support the contention that 2 X chromosomes were active in the triploid lines.Abbreviations G6PD Glucose 6-phosphate dehydrogenase - 6PGD 6-phosphogluconate dehydrogenase - HK hexokinase - PGM phosphoglucomutase - PHI phosphohexoisomerase - PFK phosphofructokinase - ALD aldolase - TPI triosephosphate isomerase - PGK phosphoglycerate kinase - ENOL enolase - AK adenylate kinase - LDH lactic dehydrogenase - HBDH hydroxybutyrate dehydrogenase INSERM U. 129.INSERM U. 73.  相似文献   

19.
The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase.Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V max values and apparent K m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme.Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified non-phosphorylated Entner-Doudoroff pathway.  相似文献   

20.
L E Anderson  X Wang    J T Gibbons 《Plant physiology》1995,108(2):659-667
Antigens closely resembling or identical to the three glycolytic enzyme proteins phosphate-glycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and aldolase are found in situ in the nucleus of the leaf mesophyll cells of pea (Pisum sativum L.). These proteins have already been identified in vertebrate nuclei. Apparently, these enzymes are nuclear proteins with "secondary" roles not directly related to their enzymatic function in carbon metabolism in both animals and plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号