首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between toluene concentration and the rate of leakage of solutes from toluene-treated roots and leaves of Sorghum bicolor, L. Moench, was studied to determine the effect of toluene on plant cell membranes. A threshold concentration of 0.2% toluene was needed to induce leakage. Maximal leakage rates were obtained with 0.5% toluene. Low molecular weight solutes, such as amino acids, sugars, and inorganic ions, leaked from treated tissue, while macromolecules, such as protein were retained. The rates at which the low molecular weight solutes diffused from treated cells decreased with increasing molecular weight. At 25°C, treatment of roots and leaves with 0.5% toluene resulted in the quasi-quantitative leakage of solutes within 180 minutes. At 1°C, roots and leaves differed in their response to toluene. The rates of leakage from roots at 1°C were much lower and the total amounts much smaller than at 25°C, while in leaves the difference between the two temperatures was very small.  相似文献   

2.
Week-old shoots of 50 Sorghum entries representing 22 species, plus four Sorghum entries of undesignated species, were dried at 75° and the dried tissue extracted with water at room temperature. The resulting extracts were diluted in 0.1 M sodium hydroxide and spectra were scanned immediately to provide a measure of free p-hydroxybenzaldehyde. Scans were repeated after the basic solutions had stood for 3 hr at room temperature to permit hydrolysis of dhurrin (S-p-hydroxymandelonitrile β-D-glucopyranoside). Without exception, the quantity of free p-hydroxybenzaldehyde was very small in relation to the quantity released by dhurrin hydrolysis.  相似文献   

3.
4.
Summary p-Cresol was oxidized by hydrogen peroxide in a reaction catalysed by horseradish peroxidase and the low molecular weight products were investigated. In aqueous media Pummerer's ketone (I) was the dominating product but in organic media the product distribution was quite different; 2,2'-dihydroxy-5,5'-dimethyldiphenyl (II) was the main low molecular weight product. Similar product distributions were obtained with peroxidase adsorbed on a solid support and suspended in toluene and with peroxidase solubilized in a microemulsion containing the same solvent. The best selectivity for the formation of (II) was obtained when the enzyme was adsorbed on Celite and suspended in water-saturated chloroform with 0.5% (v/v) extra water added. The yield of low molecular weight products in this case was 28%; of this fraction, 95% was (II). Offprint requests to: P. Adlercreutz  相似文献   

5.
Summary Oligosaccharides were synthesized through the enzymatic condensation of D-glucose by glucoamylase in water-organic mixtures with high concentrations of two of diethylene glycol diethyl ether or triethylene glycol dimethyl ether. The effect of water content on the yield of reaction was studied; maximum yield was obtained with 10% (v/v) of water in the two systems. Kinetics of synthesis and products composition were different with the two solvents. 37% of glucose were condensed by action of glucoamylase from a reaction medium containing 20 g/L of glucose and 90% (v/v) of diethylene glycol diethyl ether.  相似文献   

6.
Young sorghum shoots have been shown to convert tyrosine, p-hydroxyphenylacetaldoxime and p-hydroxyphenylacetonitrile to dhurrin, the cyanogenic glucoside characteristic of this plant. Evidence for the in vivo formation of p-hydroxyphenylacetaldoxime but not p-hydroxyphenylacetonitrile from tyrosine has been obtained from a 'trapping experiment.'  相似文献   

7.
Aims: To isolate and characterize new bacteria capable of tolerating high concentrations of organic solvents at high temperature. Methods and Results: A solvent‐tolerant, thermophilic bacterium was isolated from hot spring samples at 55°C. The strain PGDY12 was characterized as a Gram‐positive bacterium. It was able to tolerate 100% solvents, such as toluene, benzene and p‐xylene on plate overlay and high concentrations of these solvents in liquid cultures. A comparison of growth showed that 0·2% (v/v) benzene and 0·15% (v/v) p‐xylene were capable of enhancing the final cell yields. Transmission electron micrographs showed the incrassation of electron‐transparent intracellular material and the distorted cytoplasm in case of the cells grown in toluene. A phylogenetic analysis based on 16S rRNA sequence data indicated that the strain PGDY12 was member of the genus Anoxybacillus. Conclusions: The thermophilic, Gram‐positive Anoxybacillus sp. PGDY12 exhibited a unique and remarkable ability to tolerate solvents at 55°C. Significance and Impact of the Study: The solvent tolerance properties are less known in thermophilic bacteria. The Anoxybacillus sp. PGDY12 is the first strictly thermophilic bacterium able to tolerate a broad range of solvents. This strain is a promising candidate for use as a high temperature biocatalyst in the biotechnological applications.  相似文献   

8.
The cyanogenic glucoside dhurrin is rapidly synthesized in etiolated seedlings of Sorghum bicolor (L.) Moench. The dhurrin content of the seedlings increases sigmoidally with the germination time. Shoots of 10 centimeters height contain 850 nanomoles of dhurrin per shoot corresponding to 6% of the dry weight. The biosynthetic activity sharply rises upon germination and reaches a maximum level of 10 nanomoles dhurrin/(hour × shoot) after 48 hours when the shoots are 3 centimeters high. This maximum level is followed by a sharp decline in activity when germination time exceeds 65 hours. Dhurrin and the dhurrin-synthesizing enzyme system are primarily located in the upper part of the etiolated shoot where both are evenly distributed between the coleoptile, the primary leaves and the upper 0.5 centimeter of the first internode including the shoot apex. Dhurrin constitutes 30% of the dry weight of the upper 1.2 centimeter of 10 centimeter high shoots. The seed and root contain neither dhurrin nor the dhurrin-synthesizing enzyme system. The codistribution of dhurrin and the enzyme system throughout the seedling indicates that production and storage sites are located within the same cell. Purification of the dhurrin-synthesizing enzyme by gel filtration or by sucrose gradient centrifugations results in a tenfold increase in specific activity. Further purification is accompained by a decline in specific activity due to loss of essential components as demonstrated by reconstitution experiments.  相似文献   

9.
The effects of organic solvents on the stabilities of bovine pancreas trypsin, chymotrypsin, carboxypeptidase A and porcine pancreas lipase were studied. Water-miscible solvents (ethanol, acetonitrile, 1,4-dioxane and dimethyl sulfoxide) and water-immiscible solvents (ethyl acetate and toluene) were used in 100 mM phosphate buffer (pH 7.0) or 100 mM Tris/HCl buffer (pH 7.0) in concentrations of 20–80% (v/v). All hydrolytic enzymes studied were inactivated by mixtures containing dimethyl sulfoxide at higher concentrations. Trypsin and carboxypeptidase A resisted solvent mixtures containing acetonitrile, 1,4-dioxane and ethanol. They preserved more than 80% of their starting activities during 20-min incubations. The activities of lipase and chymotrypsin decreased with increasing concentration of water-miscible polar organic solvents, but at higher concentrations (80%) 70–90% of the activity remained. In mixtures with water-immiscible solvents, the decrease in activity of carboxypeptidase A was pronounced. Trypsin and chymotrypsin underwent practically no loss in activity in the presence of toluene or ethyl acetate. In respect of stability, the polar solvent proved to be more favorable for lipase. These results suggest that the conformational stabilities of hydrolytic enzymes are highly dependent on the solvent-protein interactions and the enzyme structure.  相似文献   

10.
Amyloid fibrillation in water-organic mixtures has been widely studied to understand the effect of protein-solvent interactions on the fibrillation process. In this study, we monitored insulin fibrillation in formamide and its methyl derivatives (formamide, N-methyl formamide, N,N-dimethyl formamide) in the presence and absence of water. These model solvent systems mimic the cellular environment by providing denaturing conditions and a hydrophobic environment with limited water content. Thioflavin T (ThT) assay revealed that binary mixtures of water with formamide and its methyl derivatives enhanced fibrillation rates and β-sheet abundance, whereas organic solvents suppressed insulin fibrillation. We utilized solution small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC) to investigate the correlation between protein-solvent interactions and insulin fibrillation. SAXS experiments combined with simulated annealing of the protein indicated that the degree of denaturation of the hydrophobic core region at residues B11–B17 determines the fibrillation rate. In addition, DSC experiments suggested a crucial role of hydrophobic interactions in the fibrillation process. These results imply that an environment with limited water, which imitates a lipid membrane system, accelerates protein denaturation and the formation of intermolecular hydrophobic interactions during amyloid fibrillation.  相似文献   

11.
The protease-catalyzed, kinetically controlled synthesis of a precursor dipeptide of RGDS, Z-Asp-Ser-NH2 in organic solvents was studied. Alcalase, an industrial alkaline protease, was used to catalyze the synthesis of the target dipeptide in water-organic cosolvents systems with Z-Asp-OMe as the acyl donor and Ser-NH2 as the nucleophile. Acetonitrile was selected as the organic solvent from acetonitrile, ethanol, methanol, DMF, DMSO, ethyl acetate, 2-methyl-2-propanol, and chloroform tested under the experimental conditions. The conditions of the synthesis reaction were optimized by examining the effects of several factors, including water content, temperature, pH, and reaction time on the Z-Asp-Ser-NH2 yields. The optimum conditions are pH 10.0, 35 degrees C, in acetonitrile/Na2CO3-NaHCO3 buffer system (85:15, v/v), 6 h, with a dipeptide yield of 75.5%.  相似文献   

12.
Amyloid fibrillation in water-organic mixtures has been widely studied to understand the effect of protein-solvent interactions on the fibrillation process. In this study, we monitored insulin fibrillation in formamide and its methyl derivatives (formamide, N-methyl formamide, N,N-dimethyl formamide) in the presence and absence of water. These model solvent systems mimic the cellular environment by providing denaturing conditions and a hydrophobic environment with limited water content. Thioflavin T (ThT) assay revealed that binary mixtures of water with formamide and its methyl derivatives enhanced fibrillation rates and β-sheet abundance, whereas organic solvents suppressed insulin fibrillation. We utilized solution small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC) to investigate the correlation between protein-solvent interactions and insulin fibrillation. SAXS experiments combined with simulated annealing of the protein indicated that the degree of denaturation of the hydrophobic core region at residues B11–B17 determines the fibrillation rate. In addition, DSC experiments suggested a crucial role of hydrophobic interactions in the fibrillation process. These results imply that an environment with limited water, which imitates a lipid membrane system, accelerates protein denaturation and the formation of intermolecular hydrophobic interactions during amyloid fibrillation.  相似文献   

13.
Aims:  To isolate and characterize new marine bacteria capable of tolerating high concentrations of organic solvents, and to understand the toxic effects of these chemicals on marine bacteria. Methods and Results:  Five marine bacteria able to tolerate 0·1% (v/v) toluene were isolated and characterized on the basis of their growth and survival rates in the presence of different organic solvents. The toluene-tolerant marine bacteria identified in this study could not grow in the presence of 0·1% (v/v) of several organic solvents with a log Pow higher than that of the toluene (which in theory should be less toxic than toluene). The mechanisms underlying solvent tolerance were explored. Conclusions:  Isolates of four different genera were identified as toluene-tolerant. Toxicity of a second phase of an organic solvent toward these isolates could not be predicted on the basis of the solvents’ log Pow. Significance and Impact of the Study:  To improve the biodegradation rate of some water-insoluble compounds, double-phase bioreactors can be used. This type of bioreactor will require strains able to grow in a salt-containing environment and able to tolerate a second phase of an organic solvent.  相似文献   

14.
Feasibility of producing (R)-3-hydroxybutyric acid ((R)-3-HB) using wild type Azohydromonas lata and its mutants (derived by UV mutation) was investigated. A. lata mutant (M5) produced 780 mg/l in the culture broth when sucrose was used as the carbon source. M5 was further studied in terms of its specificity with various bioconversion substrates for production of (R)-3-HB. (R)-3-HB concentration produced in the culture broth by M5 mutant was 2.7-fold higher than that of the wild type strain when sucrose (3% w/v) and (R,S)-1,3-butanediol (3% v/v) were used as carbon source and bioconversion substrate, respectively. Bioconversion of resting cells (M5) with glucose (1% v/w), ethylacetoacetate (2% v/v), and (R,S)-1,3-butanediol (3% v/v), resulted in (R)-3-HB concentrations of 6.5 g/l, 7.3 g/l and 8.7 g/l, respectively.  相似文献   

15.
We exploited the unique ecological niche of oil fly larval guts to isolate a strain of Staphylococcus haemolyticus which may be the most solvent-tolerant gram-positive bacterium yet described. This organism is able to tolerate 100% toluene, benzene, and p-xylene on plate overlays and saturating levels of these solvents in monophasic liquid cultures. A comparison of membrane fatty acids by gas chromatography after growth in liquid media with and without toluene showed that in cells continuously exposed to solvent the proportion of anteiso fatty acids increased from 25.8 to 33.7% while the proportion of 20:0 straight-chain fatty acids decreased from 19.3 to 10.1%. No changes in the membrane phospholipid composition were noted. Thus, S. haemolyticus alters its membrane fluidity via fatty acid composition to become more fluid when it is exposed to solvent. This response is opposite that commonly found in gram-negative bacteria, which change their fatty acids so that the cytoplasmic membrane is less fluid. Extreme solvent tolerance in S. haemolyticus is not accompanied by abnormal resistance to anionic or cationic detergents. Finally, six strains of Staphylococcus aureus and five strains of Staphylococcus epidermidis, which were not obtained by solvent selection, also exhibited exceptional solvent tolerance.  相似文献   

16.
Crotonase superfamily enzymes catalyze a wide variety of reactions, including hydrolytic C–C bond cleavage in symmetrical β‐diketones by 6‐oxo camphor hydrolase (OCH) from Rhodococcus sp. The organic solvent tolerance and temperature stability of OCH and its structurally related ortholog Anabaena β‐diketone hydrolase have been investigated. Both enzymes showed excellent tolerance toward organic solvents; for instance, even in the presence of 80% (v/v) THF or dioxane, OCH was still active. In most solvent mixtures, except methanol, the stereospecificity was conserved (>99% e.e. of product), hence neither the type of solvent nor its concentration appeared to have an effect on the stereoselectivity of the enzyme. Attempts to correlate the observed activities with log P, functional solvent group or denaturing capacity (DC) of the solvent were only successful in the case of DC for water miscible solvents. This study represents the first investigation of organic solvent stability for members of the crotonase superfamily. Biotechnol. Bioeng. 2011;108: 2815–2822. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
Mixtures of acetone/water (93 : 7 ··· 90 : 10, v/v) are favoured solvents for the extraction of ubiquinone-10 from Acetobacter methanolicus IMET B 346. Using these solvent mixtures ubiquinone-10 was extracted nearly completely. Other lipids were extracted partially. Extracts were obtained by optimal conditions with a ubiquinone content > 5%.  相似文献   

18.
Organic solvent-resistant Aspergillus niger α-glucosidase (ANGase) can synthesize α-2-deoxyglucosyl derivatives (2DDs) in water-organic solvent media by a trans-addition reaction from d-glucal to various acceptors. Herein, we studied the influence of four different solvents on ANGase stability and activity. ANGase exhibited 47 or 43% residual activity following incubation in 50% (v/v) or in 70% (v/v) acetone for 4 h, respectively. When various carbohydrates were used as acceptor molecules, ANGase catalyzed the addition reaction of four different sugar alcohols, glucose, sucrose, or trehalose to d-glucal. Among the acceptor molecules tested, xylitol was the best acceptor by producing the highest yield (87% addition). The concentration of acetone/acceptor influenced the formation of 2DDs and the yields. We confirmed the molecular weight of five kinds of products by mass spectrometry and enzymatic hydrolysis. Current method is useful for the production of carbohydrates containing 2-deoxyglucose moiety.  相似文献   

19.
The permeability ratio of Millipore filters saturated with organic solvents to K and to Na has been studied by measuring the potential difference across these filters. It was found that with n-octanol, toluene, and chloroform the membranes were more permeable to K+ than to Na+, the degree of discrimination being in inverse proportion to the polarity of the solvent. The dependence of NaCl and KCl diffusion potentials upon the concentration gradients across a filter soaked with about 1:1 toluene/n-butanol solution, could be expressed by the constant field equation, if it is assumed that this layer is 6 to 7 times more permeable to K+ than to Na+ and that the permeability to Cl- is negligible. Elevating the fraction of toluene in n-butanol in the separating phase makes it more selective.  相似文献   

20.
Ethyl 6-O-acetyl-2,3,4-tribenzyl-1-d-thioglucoside and ethyl 6-O-acetyl-2,3,4-tribenzyl-1-d-thiogalactoside, as a mixture of anomers, were employed in the study of the influence of solvent in the stereoselectivity of the glycosylation reaction with small and reactive acceptors. High α-selectivities were obtained in the glycosylation reactions using NIS/TfOH as activator and ethyl ether as the solvent at −60 °C. Other solvent mixtures such as dichloromethane, THF, THF/ethyl ether and toluene/dioxane were not nearly as selective. The corresponding thiogalactoside underwent similar glycosylations with the same solvents but with low anomer selectivity. These glycosides are key intermediates for the synthesis of new analogues of compatible solutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号