首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out in the northeast region of Konya in Turkey, between April and December 2004, to determine the vertical distribution of Culicoides (Diptera: Ceratopogonidae) larvae and pupae. Larvae and pupae were collected using the saturated sugar flotation technique in mud samples taken from a range of depths of up to 20 cm. In total, 282 adult Culicoides were obtained. The number of larvae and pupae decreased as the depth increased; at 2.5 cm, 97 Culicoides larvae and 73 Culicoides pupae were found. Larvae and pupae of C. nubeculosus (Meigen) and C. puncticollis (Becker) were mostly found in organic matter-rich breeding sites, while larvae and pupae of C. gejgelensis Dzhafarov and C. festivipennis Kieffer were mostly found in organic matter-poor breeding sites. Culicoides larvae and pupae were obtained largely in July and August.  相似文献   

2.
3.
4.
Surveillance of Culicoides (Diptera: Ceratopogonidae) biting midges was carried out between 2001 and 2003, at 119 sites within a 50 x 50-km grid distributed across Bulgaria, using light trap collections around the time of peak adult midge abundance. Sentinel and ad hoc serum surveillance of hosts susceptible to bluetongue infection was carried out at around 300 sites between 1999 and 2003. Following the initial incursion of bluetongue virus 9 (BTV-9) into Bourgas province in 1999, affecting 85 villages along the southern border, a further 76 villages were affected along the western border in 2001, with outbreaks extending as far north as 43.6 degrees N. The BTV-9 strain in circulation was found to have a low pathogenicity for Bulgarian sheep populations, with less than 2% of susceptible individuals becoming sick and seroconversions detected up to 30 km from recorded outbreaks in the south. The major Old World vector Culicoides imicola Kieffer was not detected among over 70,000 Culicoides identified in summer collections, suggesting that BTV-9 transmission in Bulgaria was primarily carried out by indigenous European vectors. The most likely candidates, the Palaearctic species complexes - the Culicoides obsoletus Meigen and C. pulicaris L. complexes - were widespread and abundant across the whole country. The C. obsoletus complex represented 75% of all individuals trapped in summer and occurred in high catch sizes (up to 15,000 individuals per night) but was not found across all outbreak sites, indicating that both Palearctic complexes probably played a role in transmission. Within the C. pulicaris complex, only C. pulicaris s.s., C. punctatus Meigen and C. newsteadi Austen were sufficiently abundant and prevalent to have been widely involved in transmission, whilst within the C. obsoletus complex most trapped males were C. obsoletus s.s. Adult vectors were found to be largely absent from sites in west Bulgaria for a period of at least 3 months over winter, which, taken along with the spatiotemporal pattern of outbreaks in the region between years, indicates the virus may be overwintering here by an alternative mechanism - either by covert persistence in the vertebrate host or possibly by persistence in larval stages of the vector.  相似文献   

5.
In the past decade, there have been regular outbreaks of bluetongue (BT) in many parts of Europe. Owing to the presence of BT disease and its vectors in countries adjacent to Switzerland, an initial entomological survey was conducted in 2003, which established the presence of several midges of the genus Culicoides (Diptera: Ceratopogonidae). Subsequently, a sentinel herd monitoring system was established with the primary entomological aim being the determination and further study of Culicoides population compositions. Insects were collected in 2005 and 2006 at seven sentinel herd sites in the south of Switzerland (canton of Ticino) near the border of Italy, using Onderstepoort-type light traps. This region is botanically and zoologically similar to the Mediterranean and is one of the warmest and most humid areas of the country, hence it is considered a potential access path for BT disease into Switzerland. Collections were made at four cattle farms, two equestrian centres and one goat farm. Sites were sampled four times per month from June to October. Traps were operated from dusk until dawn and samples were collected monthly for analysis through microscopy as well as a Culicoides imicola -specific PCR. Results confirmed the absence of C. imicola (Kieffer) and demonstrated that the potential BT virus vectors are highly abundant, notably: Culicoides obsoletus (Meigen), Culicoides scoticus (Downes & Kettle) and Culicoides dewulfi (Goetghebuer) subgenus Avaritia and Culicoides pulicaris (Linnaeus) subgenus Culicoides . These findings expand the current knowledge of Culicoides population composition in the southern part of the Switzerland. Culicoides cataneii (Clastrier), Culicoides flavipulicaris (Dzhafarov), Culicoides indistinctus (Khalaf), Culicoides nubeculosus (Meigen) and species of the Grisescens complex were reported for the first time in Switzerland.  相似文献   

6.
During the northern Europe epidemic of bluetongue (BT), Onderstepoort‐type blacklight traps were used to capture Culicoides Latreille (Diptera: Ceratopogonidae) biting midges weekly between November 2006 and December 2008 on 21 livestock farms in the Netherlands. Proven and potential vectors for the bluetongue virus (BTV) comprised almost 80% of the midges collected: the Obsoletus complex, constituting C. obsoletus (Meigen) and C. scoticus Downes & Kettle (44.2%), C. dewulfi Goetghebuer (16.4%), C. chiopterus (Meigen) (16.3%) and C. pulicaris (Linnaeus) (0.1%). Half of the 24 commonest species of Culicoides captured completed only one (univoltine) or two (bivoltine) generations annually, whereas multivoltine species (including all BTV vectors) cycled through five to six generations (exceeding the one to four generations calculated in earlier decades). Whether this increment signals a change in the phenology of northern Europe Culicoides or simply is an adaptive response that manifests during warmer episodes, thus heightening periodically the incursive potential of midge‐borne arboviruses, remains to be clarified. Culicoides duddingstoni Kettle & Lawson, C. grisescens Edwards, C. maritimus Kieffer, C. pallidicornis Kieffer and C. riethi Kieffer are new records for the biting midge fauna of the Netherlands. It is suggested that C. punctatus (Meigen) be added to the European list of vector Culicoides.  相似文献   

7.
During the recent Mediterranean epizootic of bluetongue, an extensive programme of serological and vector (Culicoides biting midges (Diptera: Ceratopogonidae)) surveillance was carried out across Sicily. This paper presents the analysis of 911 light trap catches collected at the times of peak Culicoides abundance (summer to autumn 2000-2002) in 269 sites, in order to produce detailed maps of the spatial distribution of the main European vector, Culicoides imicola Kieffer and that of potential novel vectors. Whereas C. imicola was found at only 12% of sites, potential novel vectors, Culicoides obsoletus group Meigen, Culicoides pulicaris Linnaeus and Culicoides newsteadi Austen were present at over 50% of sites. However, the spatial distribution of C. imicola showed the closest correspondence to that of the 2000 and 2001 bluetongue (BT) outbreaks and its presence and abundance were significant predictors of the probability of an outbreak, suggesting that it was the main vector during these years. Although C. imicola may have played a role in transmission in several sites near Paternó, it was absent from the majority of sites at which outbreaks occurred in 2002 and from all sites in the province of Messina. All three potential novel vectors were widespread across sites at which outbreaks occurred during 2002. Of these, C. newsteadi was an unlikely candidate, as it was significantly less prevalent in outbreak vs. non-outbreak sites in Messina. It is hypothesized that the yearly distribution and intensity of outbreaks is directly attributable to the distribution and abundance of the vectors involved in transmission during each year. When C. imicola operated as the main vector in 2000 and 2001, outbreaks were few in number and were restricted to coastal regions due to low abundance and prevalence of this species. In 2002, it is hypothesized that BTV transmission was handed over to more prevalent and abundant novel vector species, leading to numerous and widespread outbreaks and probably to overwintering of the virus between 2001 and 2002. Based on catch ranges in outbreak vs. non-outbreak sites, it is tentatively suggested that nightly catches of 400 or more C. obsoletus and 150 or more C. pulicaris allow BTV transmission at a site, and provide a strategy for a fuller examination of the relationship between BTV transmission and the abundance and distribution of different vector species.  相似文献   

8.
Abstract. 1. A survey of Culicoides breeding places was made around Salisbury. Out of forty species caught in light traps, only nineteen were reared from breeding places.
2. The seven most abundant species with their characteristic sites were C.pycnostictw in mud around water bodies, especially dams; C.nivosus very prevalent around puddles rich in organic matter: C. distinctipennis along drainage canals intermediate in organic matter; C.gulbenkiani in cow dung especially on damp soil; Caccraensis gp. only in rot holes and tree forks; Cschultzei gp. along streams and drainage canals in mud rather poor in organic matter; C.tropi-calis in drainage canals very low in organic matter; C.imicola possibly breeds widely dispersed mainly in a rich mixture of organic matter and damp soil, with cow pats and edges of water bodies being marginal.
3. The prevalent species are believed to breed all year round. Preponderance of females in the breeding places was found in C.pycnostictus, C.nivosus and C.accraensis gp. while the reverse was true in C.distinctipennis and C.gulbenkiani. The preponderance of males as indication of proximity to breeding sites is thus probably questionable.  相似文献   

9.
Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) include vectors for the economically important animal diseases, bluetongue (BT) and African horse sickness (AHS). In the Mediterranean Basin, these diseases are transmitted by four species of Culicoides: the first three belong in the subgenus Avaritia Fox and are Culicoides imicola Kieffer, Culicoides obsoletus (Meigen) and Culicoides scoticus Downes and Kettle; the fourth is Culicoides pulicaris (Linnaeus) in the subgenus Culicoides Latreille. In the Palaearctic Region, this subgenus (usually referred to as the C. pulicaris group) now includes a loose miscellany of some 50 taxa. The lack of clarity surrounding its taxonomy stimulated the present morphological and molecular study of 11 species collected in Italy. Phylogenetic analysis of nuclear ribosomal DNA internal transcribed spacer 2 (ITS2) sequence variation demonstrated a high degree of divergence. These results, combined with those from a parallel morphological study, disclosed: (1) that some previously described taxa should be resurrected from synonymy; (2) that there are new species to be described; (3) that the subgenus Culicoides (as currently employed) is a polyphyletic assemblage of four lineages - the subgenus Culicoides sensu stricto, the subgenus Silvicola Mirzaeva and Isaev, the subgenus Hoffmania Fox and the hitherto unrecognized Fagineus species complex. Each is discussed briefly (but not defined) and its constituent Palaearctic taxa listed. Strong congruence between morphological and molecular data holds promise for resolving many of the difficult taxonomic issues plaguing the accurate identification of vector Culicoides around the world.  相似文献   

10.
Surveillance of Culicoides (Diptera: Ceratopogonidae) biting midge vectors was carried out at 87 sites within a 50 x 50 km grid distributed across Portugal, using light trap collections at the time of peak midge abundance. Culicoides imicola (Kieffer) made up 66% of the 55 937 Culicoides in these summer collections. It was highly abundant in the central eastern portion of Portugal, between 37 degrees 5' N and 41 degrees 5' N, and in a band across to the Lisbon peninsula (at around 38 degrees 5' N). Of all the complexes, its distribution was most consistent with that of previous outbreaks of Culicoides-borne disease, suggesting that it may remain the major vector in Portugal. Its distribution was also broadly consistent with that predicted by a recent climate-driven model validating the use of remote sensing datasets for modelling of Culicoides distribution. Adult C. imicola were found to have overwintered at 12 of 20 sites re-surveyed in winter but it did so in very low numbers. Culicoides obsoletus (Meigen) and Culicoides pulicaris (Linnaeus) complex midges were widespread despite their low summer abundance. The observed coincidence of high abundances of C. imicola and high abundances of C. pulicaris in summer lead us to suggest that C. imicola could bring African horse sickness virus or bluetongue virus into contact with C. pulicaris and the latter complex, together with C. obsoletus, could then transmit these viruses across much wider areas of Europe. The fact that adult C. pulicaris are present in high abundances in winter may provide a mechanism by which these viruses can overwinter in these areas.  相似文献   

11.
Surveillance data from 268 sites in Sicily are used to develop climatic models for prediction of the distribution of the main European bluetongue virus (BTV) vector Culicoides imicola Kieffer (Diptera: Ceratopogonidae) and of potential novel vectors, Culicoides pulicaris Linnaeus, Culicoides obsoletus group Meigen and Culicoides newsteadi Austen. The models containing the 'best' climatic predictors of distribution for each species, were selected from combinations of 40 temporally Fourier-processed remotely sensed variables and altitude at a 1 km spatial resolution using discriminant analysis. Kappa values of around 0.6 for all species models indicated substantial levels of agreement between model predictions and observed data. Whilst the distributions of C. obsoletus group and C. newsteadi were predicted by temperature variables, those of C. pulicaris and C. imicola were determined mainly by normalized difference vegetation index (NDVI), a variable correlated with soil moisture and vegetation biomass and productivity. These models were used to predict species presence in unsampled pixels across Italy and for C. imicola across Europe and North Africa. The predicted continuous presence of C. pulicaris along the appenine mountains, from north to south Italy, suggests BTV transmission may be possible in a large proportion of this region and that seasonal transhumance (seasonal movement of livestock between upland and lowland pastures) even in C. imicola-free areas should not generally be considered safe. The predicted distribution of C. imicola distribution shows substantial agreement with observed surveillance data from Greece and Iberia (including the Balearics) and parts of mainland Italy (Lazio, Tuscany and areas of the Ionian coast) but is generally much more restricted than the observed distribution (in Sardinia, Corsica and Morocco). The low number of presence sites for C. imicola in Sicily meant that only a restricted range of potential C. imicola habitats were included in the training set and that predictions could only be made within this range. Future modelling exercises will use abundance data collected according to a standardized protocol across the Mediterranean and, for Sicily in particular, should include non-climatic environmental variables that may influence breeding site suitability such as soil type.  相似文献   

12.
In 2006, a strain of bluetongue virus serotype 8 (BTV-8) of sub-Saharan origin was responsible for the first outbreaks in recorded history of clinical bluetongue disease (BT) in northern Europe. In this study, we examine the oral susceptibility of Culicoides (Avaritia) imicola Kieffer (Diptera: Ceratopogonidae) and other livestock-associated Culicoides species from southern Africa to infection with several strains of BTV-8. Following feeding using an artificial membrane-based method and incubation, virus was found in <1% of C. imicola individuals tested. Higher rates of susceptibility were found, however, for a variety of other South African species, including Culicoides (Avaritia) bolitinos Meiswinkel. Although these results do not preclude the role of C. imicola as a vector of BTV-8, its low susceptibility to BTV indicates that other less abundant Culicoides species may have the potential to play decisive roles in the epidemiology of this virus and should not be excluded from risk assessment studies.  相似文献   

13.
14.
15.
Following the first incursion of bluetongue virus (BTV) into Italy, the geographical and seasonal distribution of the biting midge Culicoides imicola Kieffer (Diptera: Ceratopogonidae), the main vector of BTV and African horse sickness virus, was investigated in two regions of central Italy (Lazio and Tuscany). Surveillance of Culicoides was carried out between July 2001 and December 2002 using light traps: 1917 collections were made in 381 trap sites, well distributed across both regions. During the survey, bluetongue outbreaks were recorded in both regions. Culicoides imicola was found in 89 (23%) trap sites, distributed fairly continuously along the whole western coastline, between 41.2697 degrees N and 44.05724 degrees N. It was found only occasionally inland and usually in low abundance, with catches of more than 1000 specimens per night found in only two sample sites and 74% of catches numbering fewer than 10 specimens. Adults were caught from March to mid December, with peaks ranging from the end of August to mid November. The coastal distribution and the presence of only few sites with year-round records of adult vectors suggests that colonization may have occurred recently, by passive wind-dispersal from external source areas (Sardinia and Corsica). Alternatively, the species may occur in established, previously undetected, autochthonous populations that are limited from extension inland and northern-ward within Lazio and Tuscany by cool winter temperatures.  相似文献   

16.
Bluetongue (BT) is an infectious disease of ruminants that has spread northwards in Europe during the last decade. The aetiological agent of the disease is an arbovirus [bluetongue virus (BTV)] that belongs to the genus Orbivirus (family Reoviridae). The virus is transmitted by certain species of biting midge within the genus Culicoides (Diptera: Ceratopogonidae). Information on the vector status of the Culicoides species in a specific area will be essential to predict the risk for BTV incursion. Field-collected Culicoides (Avaritia) imicola Kieffer from South Africa were fed on blood containing several Spanish isolates of BTV. Despite the high virus concentrations in the bloodmeal (5.1-6.4 log(10) TCID(50) /mL of blood), virus was recovered from <1% of midges assayed after incubation. Virus concentrations >2.5 log(10) TCID(50) /midge in individual infected C. imicola suggest virus replication with possible risk for transmission to susceptible vertebrate hosts in the field for at least two of the serotypes assayed (BTV-1 and BTV-2). A third serotype (BTV-4) was very close to the estimated threshold for transmission. The relatively low to near refractory status of C. imicola compared with other vector species such as Culicoides bolitinos supports previous results, indicating that Culicoides species other than C. imicola may play a more important role in the epidemiology of BTV.  相似文献   

17.
吸血蠓类对人畜危害较大,不仅是多种疾病的传播媒介,而且刺叮吸血骚扰性很大。1988年我们在辽宁省丹东地区东沟和风城二县郊区进行了采集和生态习性的调查,现将结果报道如下。材料和方法器材由军事医学科学院微生物流行病研究所提供的诱蠓帐、捕虫网和吸虫器。调查方法  相似文献   

18.
Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) play important roles in the transmission of viral diseases affecting wild and domestic ruminants and horses, including Bluetongue (BT) and African horse sickness (AHS) respectively. In southern Europe, BT has been largely transmitted by the classical Afro-Asian vector Culicoides imicola Kieffer. However, other species such as C. obsoletus Meigen, C. scoticus Downs & Kettle and C. pulicaris Linné may also be involved in BTV transmission. As a consequence of the discovery of C. imicola followed by BTV-2 outbreaks on the island of Corsica in October 2000, further studies on these biting midges have been carried out. To better characterize the evolution and phylogenetic relations of Culicoides, molecular analysis in parallel with a morphology-based taxonomic approach were performed. Phylogenetic analyses of French Culicoides species were undertaken using the ribosomal DNA (rDNA) internal transcribed spacer 1 (ITS1) as a molecular target. This region was shown to be useful in understanding evolutionary and genetic relationships between species. Construction of several trees showed that molecular phylogeny within the genus Culicoides correlates not only with morphological-based taxonomy but also with ecological patterns.  相似文献   

19.
Nearly 230 species of biting midges have been recorded or described from Argentina; 38 of them are known from the Buenos Aires province and only one is cited from Martín García Island. This paper presents the results raised from six collecting trips which took place on the island during spring 2005, summer 2006 and autumn 2009. Diverse sampling sites including permanent and temporary aquatic environments were chosen, most of the ten sampling sites were ponds of diverse origin, some of these environments were covered with floating vegetation as Lemna gibba, Lemna minuscule, Salvinia biloba, Salvinia minima, Azolla filiculoides, Limnobium laevigatum, Pistia stratiotes, Spirodela intermedia, Wolffiella oblonga and Wolffia columbiana. Other sites were placed in urban and suburban areas. Adults were collected with sweep nets at sunrise and sunset and with light traps at intervals of four to five hours at night, depending on electricity availability on the island. Larvae and pupae were collected with different implements depending on characteristics of each surveyed aquatic habitat. In free standing water, they were captured with small sieves or hand pipettes and micropipettes, flotation techniques were utilized for sampling vegetated areas, free and rooted floating hydrophytes were extracted for removing insects among them. Thirteen species of Ceratopogonidae were collected, three of Atrichopogon Kieffer, three of Forcipomyia Meigen, two of Dasyhelea Kieffer, four of Culicoides Latreille, and one of Bezzia Kieffer, all representing new records from the island.  相似文献   

20.
An outbreak of the livestock viral disease bluetongue (BT) was detected during September and October 2000 in the Balearic Islands, Spain. Due to the lack of information about the species of Culicoides (Diptera: Ceratopogonidae) reported in the affected area, six farms in Majorca, four in Minorca and one in Ibiza were selected to carry out surveillance of Culicoides adults using light traps. Here, for the first time, we report the presence in the Balearic Islands of Culicoides imicola Keiffer, the main vector of BT, and the Culicoides obsoletus Meigen group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号