首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of [(PPh3)2Pt(η3-CH2CCPh)]OTf with each of PMe3, CO and Br result in the addition of these species to the metal and a change in hapticity of the η3-CH2CCPh to η1-CH2CCPh or η1-C(Ph)=C=CH2. Thus, PMe3 affords [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+, CO gives both [trans-(PPh3)2Pt(CO)(η1-CH2CCPh)]+ and [trans-(PPh3)2Pt(CO)(η1-C(Ph)=C=CH2)]+, and LiBr yields cis-(PPh3)2PtBr(η1-CH2CCPh), which undergoes isomerization to trans-(PPh3)2PtBr(η1-CH2CCPh). Substitution reactions of cis- and trans-(PPh3)2PtBr(η1-CH2CCPh) each lead to tautomerization of η1-CH2CCPh to η1-C(Ph)=C=CH2, with trans-(PPh3)2PtBr(η1-CH2CCPh) affording [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+ at ambient temperature and the slower reacting cis isomer giving [trans-(PPh3)(PMe3)2Pt(η1-C(Ph)=C=CH2)]+ at 54 °C . All new complexes were characterized by a combination of elemental analysis, FAB mas spectrometry and IR and NMR (1H, 13C{1H} and 31P{1H}) spectroscopy. The structure of [(PMe3)3Pt(η1-C(Ph)=C=CH2)]BPh4·0.5MeOH was determined by single-crystal X-ray diffraction analysis.  相似文献   

2.
The preparation and reaction chemistry of 1,3- and 1,2-diene and related complexes derived from metal carbonyl containing anions and allenic electrophiles are addressed. The preparation of some CpFe(CO)2 η1-diene complexes and their conversion into CpFe(CO) η3-diene complexes is presented followed by reactions of CpMo(CO)3, CpW(CO)3 and CpMo(CO)2PR3 anions with allenic electrophiles which produce metal complexed cyclobutenones (via CO and alkene insertions from the initially formed product) and 1,2-diene complexes, respectively. Lastly, the reactions of PPh3(CO)3Co anions with allenic electrophiles are outlined which result in several different coordination geometries depending on the reaction conditions used.  相似文献   

3.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

4.
Metathesis of [(η33−C10H16)Ru(Cl) (μ−Cl)]2 (1) with [R3P) (Cl)M(μ-Cl)]2 (M = Pd, Pt), [Me2NCH2C6H4Pd(μ-Cl)]2 and [(OC)2Rh(μ-Cl)]2 affords the heterobimetallic chloro bridged complexes (η33-C10H16) (Cl)Ru(μ-Cl)2M(PR3)(Cl) (M = Pd, Pt), (η33-C10H16) (Cl)Ru(μ-Cl)2PdC6H4CH2NMe2 and (η33-C10H16) (Cl)Ru(μ-Cl)2Rh(CO)2, respectively. Complex 1 reacts with [Cp*M(Cl) (μ-Cl)]2 (M = Rh, Ir), [p-cymene Ru(Cl) (μ-Cl]2 and [(Cy3P)Cu(μ-Cl)]2 to give an equilibrium of the heterobimetallic complexes and of educts. The structures of (η33-C10H16)Ru(μ-Cl)2Pd(PR3) (Cl) (R = Et, Bu) and of one diastereoisomer of (η33-C10H16)Ru(μ-Cl)2IrCp*(Cl) were determined by X-ray diffraction.  相似文献   

5.
Reaction of RuCl(η5-C5H5(pTol-DAB) with AgOTf (OTf = CF3SO3) in CH2Cl2 or THF and subsequent addition of L′ (L′ = ethene (a), dimethyl fumarate (b), fumaronitrile (c) or CO (d) led to the ionic complexes [Ru(η5-C5H5)(pTol-DAB)(L′)][OTf] 2a, 2b and 2d and [Ru(η5-C5H5)(pTol-DAB)(fumarontrile-N)][OTf] 5c. With the use of resonance Raman spectroscopy, the intense absorption bands of the complexes have been assigned to MLCT transitions to the iPr-DAB ligand. The X-ray structure determination of [Ru(η5-C5H5)(pTol-DAB)(η2-ethene)][CF3SO3] (2a) has been carried out. Crystal data for 2a: monoclinic, space group P21/n with A = 10.840(1), b = 16.639(1), C = 14.463(2) Å, β = 109.6(1)°, V = 2465.6(5) Å3, Z = 4. Complex 2a has a piano stool structure, with the Cp ring η5-bonded, the pTol-DAB ligand σN, σN′ bonded (Ru-N distances 2.052(4) and 2.055(4) Å), and the ethene η2-bonded to the ruthenium center (Ru-C distances 2.217(9) and 2.206(8) Å). The C = C bond of the ethene is almost coplanar with the plane of the Cp ring, and the angle between the plane of the Cp ring and the double of the ethene is 1.8(0.2)°. The reaction of [RuCl(η5-C5H5)(PPh)3 with AgOTf and ligands L′ = a and d led to [Ru(η5-C5H5)(PPh3)2(L′)]OTf] (3a) and (3d), respectively. By variable temperature NMR spectroscopy the rottional barrier of ethene (a), dimethyl fumarate (b and fumaronitrile (c) in complexes [Ru(η5-C5H5)(L2)(η2-alkene][OTf] with L2 = iPr-DAB (a, 1b, 1c), pTol-DAB (2a, 2b) and L = PPh3 (3a) was determined. For 1a, 1b and 2b the barrier is 41.5±0.5, 62±1 and 59±1 kJ mol−1, respectively. The intermediate exchange could not be reached for 1c, and the ΔG# was estimated to be at least 61 kJ mol. For 2a and 3a the slow exchange could not be reached. The rotational barrier for 2a was estimated to be 40 kJ mol. The rotational barier for methyl propiolate (HC≡CC(O)OCH3) (k) in complex [Ru(η5-C5H5)(iPr-DAB) η2-HC≡CC(O)OCH3)][OTf] (1k) is 45.3±0.2 kJ mol−1. The collected data show that the barrier of rotational of the alkene in complexes 1a, 2a, 1b, 2b and 1c does not correlate with the strength of the metal-alkene interaction in the ground state.  相似文献   

6.
Manganese tricarbonyl complexes (η5-C5H4CH2CH2Br)Mn(CO)3 (3) and (η5-C5H4CH2CH2I)Mn(CO)3 (4), with an alkyl halide side chain attached to the cyclopentadienyl ligand, were synthesized as possible precursors to chelated alkyl halide manganese complexes. Photolysis of 3 or 4 in toluene, hexane or acetone-d6 resulted in CO dissociation and intramolecular coordination of the alkyl halide to manganese to produce (η51-C5H4CH2CH2Br)Mn(CO)2 (5) and (η51-C5H4CH2CH2I)Mn(CO)2 (6). Low temperature NMR and IR spectroscopy established the structures of 5 and 6. Photolysis of 3 in a glass matrix at 91 K demonstrated CO release from manganese. Low temperature NMR spectroscopy established that the coordinated alkyl halide complexes are stable to approximately −20°C.  相似文献   

7.
The dinuclear Pt---Si complex {(Ph3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-1a–cis-1b=3:1; IMP=2-isopropyl-6-methylphenyl) reacted with basic phosphines such as 1,2-bis(diphenylphosphino)ethane (dppe) and dimethylphenylphosphine (PMe2Ph) to afford different dinuclear Pt---Si complexes with loss of H2, {(P)2Pt[μ-SiH(IMP)]}2 [P=dppe, trans-2a (major), cis-2b (trace); PMe2Ph, 3 (trans only)]. Complexes 2 and 3 were characterized by multinuclear NMR spectroscopy and X-ray crystallography (2a). In contrast, the reaction of 1a,b with the sterically demanding tricyclohexylphosphine (PCy3) afforded {(Cy3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-4a–cis-4b 2:1) analogous to 1a,b where the central Pt2Si2(μ-H)2 core remains intact but the PPh3 ligands have been replaced by PCy3. Complexes 4a and 4b was characterized by multinuclear NMR and IR spectroscopies.  相似文献   

8.
The positive ion electrospray mass spectrometry (ESI-MS) of trans-[Ru(NO)Cl)(dpaH)2]Cl2 (dpaH=2,2′-dipyridylamine), obtained from the carrier solvent of H2O–CH3OH (50:50), revealed 1+ ions of the formulas [RuII(NO+)Cl(dpaH)(dpa)]+ (m/z=508), [RuIIICl(dpaH)(dpa)]+ (m/z=478), [RuII(NO+)(dpa)2]+ (m/z=472), [RuIII(dpa)2]+ (m/z=442), originating from proton dissociation from the parent [RuII(NO+)Cl(dpaH)2]2+ ion with subsequent loss of NO (17.4% of dissociative events) or loss of HCl (82.6% of dissociative events). Further loss of NO from the m/z=472 fragment yields the m/z=442 fragment. Thus, ionization of the NH moiety of dpaH is a significant factor in controlling the net ionic charge in the gas phase, and allowing preferential dissociation of HCl in the fragmentation processes. With NaCl added, an ion pair, {Na[RuII(NO)Cl(dpa)2]}+ (m/z=530; 532), is detectable. All these positive mass peaks that contain Ru carry a signature ‘handprint’ of adjacent m/z peaks due to the isotopic distribution of 104Ru, 102Ru, 101Ru, 99Ru, 98Ru and 96Ru mass centered around 101Ru for each fragment, and have been matched to the theoretical isotopic distribution for each set of peaks centered on the main isotope peak. When the starting complex is allowed to undergo aquation for two weeks in H2O, loss of the axial Cl is shown by the approximately 77% attenuation of the [RuII(NO+)Cl(dpaH)(dpa)]+ ion, being replaced by the [RuII(NO+)(H2O)(dpa)2]+ (m/z=490) as the most abundant high-mass species. Loss of H2O is observed to form [RuII(NO+)(dpa)2]+ (m/z=472). No positive ion mass spectral peaks were observed for RuCl3(NO)(H2O)2, ‘caged NO’. Negative ions were observed by proton dissociation forming [RuII(NO)Cl3(H2O)(OH)] in the ionization chamber, detecting the parent 1− ion at m/z=274, followed by the loss of NO as the main dissociative pathway that produces [RuIIICl3(H2O)(OH)] (m/z=244). This species undergoes reductive elimination of a chlorine atom, forming [RuIICl2(H2O)(OH)] (m/z=208). The ease of the NO dissociation is increased for the negative ions, which should be more able to stabilize a RuIII product upon NO loss.  相似文献   

9.
The first η2-olefinic monocarbon metallacarbone closo-2-(Ph3P)-1-N,2-[μ-(η2-CH2CH=Ch2)]-1-N-(σ-CH2CH=CH2)-2,1- RhCB10H10 has been prepared by the reaction of the dimeric anion {[Ph3PRhB10H10CNH2]2-μ-H}[PPN]+ with allyl bromide and characterized by a combination of spectroscopic methods and a single-crystal X-ray diffraction study. The variable temperature 1H and 13C NMR studies revealed the fluxional behavior of the η2-olefinic complex in CD2Cl2 solution which is associated with the allyl side-chain exchange process.  相似文献   

10.
A reduction of previously reported 2-methoxyethyl and 2-methylthioethyl functionalized zirconocenedichlorides (η5-C5Me4CH2CH2EMe)(η5-C5Me5)(ZrCl2 (E = O, S) and (η5-C5Me4CH2CH2EMe)(η5-C5Me4CH2CH2E′Me)ZrCl2 (E = O, S; E′ = O, S) with Mg/Hg in THF leads unexpectedly to the products of O---Me and S---Me bond cleavage (η5,σ-C5Me4CH2CH2E)(η5-C5Me5)ZrMe (E = O, S), (η5,σ-C5Me4CH2CH2E)(η5-C5Me4CH2CH2E′Me)ZrMe (E = O, S; E′ = O), and (η5,σ-C5Me4CH2CH2S)2Zr respectively. The crystal structure of (η5,σ-C5Me4CH2CH2S)2Zr was established by X-ray analysis. At that same time the reduction of (ηsu5-C5Me4CH2CH2EMe)(η5-C5Me5)ZrCl2 (E> = O, S) under 1 atm of CO gives either only the dicarbonyl derivative (η5-C5Me4CH2CH2EMe) (η5-C6Me5)Zr(CO)2 (E = O) or a complex mixture of products (E = S).  相似文献   

11.
A series of mono-cationic polypyridyl-ruthenium complexes with strongly electron donating β-diketonate ligands {(dcbp)2Ru(L)}Cl, where DCBP=4,4′-dicarboxy-2,2′-bipyridine; L=acetylacetonate (1), 3-methyl-2,4-pentanedionate (2), 1,3-diphenyl-1,3-propanedionate (3), have been synthesized as molecular photosensitizers for a nanocrystalline TiO2 electrode. In alkaline methanol solution, these complexes exhibit intense visible light absorption with low energy MLCT maxima above 517 nm which accompany a significantly enhanced band tail, improving red light absorptivity beyond 600 nm. The photoelectrochemical properties of these three diketonate complexes on a TiO2 semiconductor have been compared to cis-dithiocyanate complex, (dcbp)2Ru(NCS)2, which is one of the most efficient sensitizers reported to date. The diketonate complexes show quite high performances in photoelectrochemical cells containing I/I3 − electrolyte. The overall solar light-to-electrical energy conversion efficiencies are in the range of 6.0–3.9% while the dithiocyanate complex yields 5.7% efficiency in our experiments.  相似文献   

12.
Analogy with the isolable oxo cluster [Fe3(CO)93-O)]2−, which is structurally interesting and synthetically useful, prompted the present attempt to synthesize its ruthenium analog. Although the high reactivity of [Ru3(CO)93-O)]2− (I) prevented its isolation, the reaction of this species with [M(CO)3(NCCH3)]+, where M = Mn or Re, yields [PPN][MRu3(CO)1223-NC(μ-O)CH3]. The high nucleophilicity of the oxo ligand in [Ru3(CO)93-O)]2− (I) appears to be responsible for the conversion of acetonitrile to an acetamidediato ligand and for the instability of I. The crystal structure of [PPN][MnRu3(CO)1223-NC(μ-O)CH3)]] reveals a hinged butterfly array of metal atoms in which the acetamidediato ligand bridges the two wings with μ3-N bonding to an Mn and two Ru atoms, and μ-O bonding to an Ru atom.  相似文献   

13.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

14.
Acetylene was reduced by zinc amalgam in the presence of three synthetic polynuclear complexes: {[Mg2Mo8O22(OMe)6(MeOH)4]−2·[Mg(MeOH)6]2+}6MeOH (I), (Bu4N)2[Fe4S4(SPh)4] (II), [Me4N][VFe3S4Cl3(DMF)3]·2DMF (III) and the iron-molybdenum cofactor of nitrogenase Azotobacter vinelandii MoFe7(S2−)9·homocitrate, FeMo-co (IV). Thiophenol was found to greatly facilitate the reaction in the presence of complexes I, II, IV. The reaction is catalytic and for I and IV proceeds at the amalgam surface. Thiophenol seems to increase the adsorption of the complexes, serving as an electron bridge to transfer electrons to the catalyst. In the case of II a homogeneous reduction of the substrate occurs presumably after the cluster reduction at the surface and with III the catalytic reduction proceeds only under the action of sodium amalgam; no thiophenol cocatalytic action is observed. Relevance to N2 enzymatic reduction is discussed.  相似文献   

15.
Reactions of Cr(CO)36-BT), in which the Cr is π-coordinated to the benzene ring of benzo[b]thiophene (BT), with Cp′(CO)2Re(THF), where Cp′ = η5-C5H5 or η5-C5Me5, give the products Cp′(CO)2Re(η262-BT)Cr(CO)3 in which the Cr remains coordinated to the benzene ring and Re is bound to the C(2)=C(3) double bond. An X-ray diffraction study of Cp(CO)2Re(η262-BT)Cr(CO)3 (3) provides details of the geometry. This structure contrasts with that of the Cp′(CO)2Re(BT) complexes that exist as mixtures of isomers in which the BT is coordinated to the Re through either the double bond (2,3-η2) or the sulfur (η1(S)). Thus, the electron-withdrawing Cr(CO)3 group in 3 stabilizes the 2,3-η2 mode of BT coordination to the Cp′(CO)2Re fragment. Implications of these results for catalytic hydrodesulfurization of BT are discussed. Crystal data for 3: triclinic, space group .  相似文献   

16.
Monobridged-dinuclear platinum(II) complexes, where the bridging ligand is 4,4′-dipyrazolylmethane, have been prepared for use as potential anticancer agents. The complexes synthesized include [{cis-PtCl2(NH3)}2(μ-dpzm)], [{trans-PtCl2(Me2SO)}2(μ-dpzm)] and [{cis-PtCl2(Me2SO)}2(μ-dpzm)]. The characterization of these complexes is based on microanalytical, IR and 1H NMR data.  相似文献   

17.
Gas phase photoelectron spectroscopy (PES) is used to investigate the bonding and electronic structure in (fv) [M(CO)2]2 (fv = fulvalene, η55-C10H82−; M = Co, Rh). The results for these bimetallic complexes are also compared to those for the analogous monometallic complexes CpM(CO)2 (Cp = η5−C5H5; M = Co, Rh) which have been reported previously. The low valence ionization patterns observed for CpCo(CO)2 and (fv)[Co(CO)2]2 are very similar, indicating that there is little electronic interaction between the two metals of the dicobalt complex. The spectrum of (fv)[Rh(CO)2]2 also is very similar to the spectrum of CpRh(CO)2, except that the first metal ionizations in the bimetallic rhodium compound show a significant splitting (0.45 eV). This splitting is due to electronic interaction between the two metal centers which occurs via communication through the fulvalene π system. The differences in electronic structure are compared to the differences in electrochemical behavior of the Co and Rh fulvalene complexes.  相似文献   

18.
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru25-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh25-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system. space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru25-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru26-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively.  相似文献   

19.
The reactivity, towards nucleophiles and electrophiles, of dimolybdenum allenylidene complexes of the type [Cp2Mo2(CO)4(μ,η2(4e)-C=C=CR1R2)] (Cp=η5-C5H5) has been investigated. The nucleophilic attacks occur at the Cγ carbon atom, while electrophiles affec the C atom. Variable temperature solution 1H NMR studies show a dynamic behavior of these complexes consisting of an equilibrium between two enantiomers with a symmetrical [Cp2Mo2(CO)4(μ-σ,σ(2e)-C=C=CR1R2)] transition state. Extended Hückel MO calculations have been carried out on the model [Cp2Mo2(CO)4(μ,η2-C=C=CH2]. The calculated charges of the allenylidene carbon atoms suggest that the electrophilic attacks are under charge control, while the nucleophilic attacks are rather under orbital control.  相似文献   

20.
The Pd---C bond of the cyclopalladated derivative of dimethylaminomethylferrocene (1) is fairly reactive to insertion of conjugated dienes such as 1,3-butadiene, isoprene, 2,3-dimethylbutadiene or 1,3-cyclohexadiene. This reaction affords organopalladium complexes containing an η3-allyl-Pd moiety where the NMe2 unit of the starting material is still intramolecularly coordinated to Pd. These complexes are stable in solution but in MeOH in the presence of PPh3, reductive elimination of Pd is observed. This occurs whilst a nucleophilic intramolecular addition of the NMe2 group to the allylic fragment takes place, affording six-, seven- or eight-membered heterocyclic compounds. The importance of the steric effects of the substituents on the butenyl chain upon the course of the reaction has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号