共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
E. Boger-Nadjar N. Vaisman S. Ben-Yehuda Y. Kassir M. Kupiec 《Molecular & general genetics : MGG》1998,260(2-3):232-241
The S. cerevisiae CDC40 gene was originally identified as a cell-division-specific gene that is essential only at elevated temperatures. Cells carrying
mutations in this gene arrest with a large bud and a single nucleus with duplicated DNA content. Cdc40p is also required for
spindle establishment or maintenance. Sequence analysis reveals that CDC40 is identical to PRP17, a gene involved in pre-mRNA splicing. In this paper, we show that Cdc40p is required at all temperatures for efficient entry
into S-phase and that cell cycle arrest associated with cdc40 mutations is independent of all the known checkpoint mechanisms.
Using immunofluorescence, we show that Cdc40p is localized to the nuclear membrane, weakly associated with the nuclear pore.
Our results point to a link between cell cycle progression, pre-mRNA splicing, and mRNA export.
Received: 9 April 1998 / Accepted: 10 August 1998 相似文献
3.
mRNA的可变剪接(alternative splicing)是一种由一个mRNA前体(pre-mRNA)通过不同的剪接方式产生多个mRNA变异体(variants)的RNA加工过程。在过去很长一段时间里,人们认为mRNA剪接过程是独立于转录过程的一个转录后RNA加工过程。然而,越来越多的实验证明mRNA剪接在很大程度上是与转录偶联发生的。因此,剪接调控会受到与转录相关因素的调控。本文将对染色质与mRNA剪接调控的相关性和染色质结构调控可变剪接的分子机制进行阐述。 相似文献
4.
Exon 9 skipping of apoptotic caspase-2 pre-mRNA is promoted by SRSF3 through interaction with exon 8
Ha Na Jang Minho Lee Tiing Jen Loh Seung-Woo Choi Hyun Kyung Oh Heegyum Moon Sunghee Cho Seong-Eui Hong Do Han Kim Zhi Sheng Michael R. Green Daeho Park Xuexiu Zheng Haihong Shen 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2014,1839(1):25-32
Alternative splicing plays an important role in gene expression by producing different proteins from a gene. Caspase-2 pre-mRNA produces anti-apoptotic Casp-2S and pro-apoptotic Casp-2L proteins through exon 9 inclusion or skipping. However, the molecular mechanisms of exon 9 splicing are not well understood. Here we show that knockdown of SRSF3 (also known as SRp20) with siRNA induced significant increase of endogenous exon 9 inclusion. In addition, overexpression of SRSF3 promoted exon 9 skipping. Thus we conclude that SRSF3 promotes exon 9 skipping. In order to understand the functional target of SRSF3 on caspase-2 pre-mRNA, we performed substitution and deletion mutagenesis on the potential SRSF3 binding sites that were predicted from previous reports. We demonstrate that substitution mutagenesis of the potential SRSF3 binding site on exon 8 severely disrupted the effects of SRSF3 on exon 9 skipping. Furthermore, with the approach of RNA pulldown and immunoblotting analysis we show that SRSF3 interacts with the potential SRSF3 binding RNA sequence on exon 8 but not with the mutant RNA sequence. In addition, we show that a deletion of 26 nt RNA from 5′ end of exon 8, a 33 nt RNA from 3′ end of exon 10 and a 2225 nt RNA from intron 9 did not compromise the function of SRSF3 on exon 9 splicing. Therefore we conclude that SRSF3 promotes exon 9 skipping of caspase-2 pre-mRNA by interacting with exon 8. Our results reveal a novel mechanism of caspase-2 pre-mRNA splicing. 相似文献
5.
New prp (pre-mRNA processing) mutants of the fission yeast Schizosaccharomyces pombe were isolated from a bank of 700 mutants that were either temperature sensitive (ts-) or cold sensitive (cs-) for growth. The bank was screened by Northern blot analysis with probes complementary to S. pombe U6 small nuclear RNA (sn RNA), the gene for which has a splicesomal (mRNA-type) intron. We identified 12 prp mutants that accumulated the U6 snRNA precursor at the nonpermissive temperature. All such mutants were also found to have
defects in an early step of TFIID pre-mRNA splicing at the nonpermissive temperature. Complementation analyses showed that
seven of the mutants belong to six new complementation groups designated as prp8 and prp10-prp14, whereas the five other mutants were classified into the known complementation groups prp1, prp2 and prp3. Interestingly, some of the isolated prp mutants produced elongated cells at the nonpermissive temperature, which is a phenotype typical of cell division cycle (cdc) mutants. Based on these findings, we propose that some of the wild-type products from these prp
+ genes play important roles in the cellular processes of pre-mRNA splicing and cell cycle progression.
Received: 15 April 1996/Accepted: 9 July 1996 相似文献
6.
真核基因可变剪接研究现状与展望 总被引:2,自引:0,他引:2
mRNA前体(pre-mRNA)的可变剪接是控制基因表达和产生蛋白质多样性的重要机制,是功能基因组时代的研究重点之一。生物信息学在识别可变剪接基因及其结构、分析可变剪接的功能和调控方式等方面具有重要作用。除了耗时的实验研究,识别可变剪接基因及其结构主要通过EST、mRNA等转录数据与基因组序列进行比对,获得同一基因的不同结构方式。分析蛋白质产物可对可变剪接的功能进行预测;潜在调控元件的统计分析则可为可变剪接调控机制的研究提供必要的数据。转录数据的时空信息以及比较基因组学对理解可变剪接信息的精确调控将提供重要资料。可变剪接及其调控机制的深入研究将为基因组和蛋白质组之间的对接提供重要的桥梁。 相似文献
7.
Soraya Becerra Marta Montes Cristina Hernández-Munain Carlos Su?é 《RNA (New York, N.Y.)》2015,21(3):438-457
The first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5′ splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3′ splice site. The 5′ and 3′ splice site complexes are thought to be joined together by protein–protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40. PRPF40B is highly enriched in speckles with a behavior similar to splicing factors. We demonstrated that PRPF40B interacts directly with SF1 and associates with U2AF65. Accordingly, PRPF40B colocalizes with these splicing factors in the cell nucleus. Splicing assays with reporter minigenes revealed that PRPF40B modulates alternative splice site selection. In the case of Fas regulation of alternative splicing, weak 5′ and 3′ splice sites and exonic sequences are required for PRPF40B function. Placing our data in a functional context, we also show that PRPF40B depletion increased Fas/CD95 receptor number and cell apoptosis, which suggests the ability of PRPF40B to alter the alternative splicing of key apoptotic genes to regulate cell survival. 相似文献
8.
Yao XM Wang CH Song BL Yang XY Wang ZZ Qi W Lin ZX Chang CC Chang TY Li BL 《Acta biochimica et biophysica Sinica》2005,37(12):797-806
Acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2) plays an important role in cholesterol absorption. Human ACAT2 is highly expressed in small intestine and fetal liver, but its expression is greatly diminished in adult liver. The full-length human ACAT2 mRNA encodes a protein, designated ACAT2a, with 522 amino acids. We have previously reported the organization of the human ACAT2 gene and the differentiation-dependent promoter activity in intestinal Caco-2 cells. In the current work, two human ACAT2 mRNA variants produced by alternative splicing are cloned and predicted to encode two novel ACAT2 isoforms, named ACAT2b and ACAT2c, with 502 and 379 amino acids, respectively. These mRNA variants differ from ACAT2a mRNA by lack of the exon 4 (ACAT2b mRNA) and exons 4-5 plus 8-9-10 (ACAT2c mRNA). Significantly, comparable amounts of the alternatively spliced ACAT2 mRNA variants were detected by RT- PCR, and Western blot analysis confirmed the presence of their corresponding proteins in human liver and intestine cells. Furthermore, phosphorylation and enzymatic activity analyses demonstrated that the novel isoenzymes ACAT2b and ACAT2c lacked the phosphorylatable site SLLD, and their enzymatic activities reduced to 25%-35% of that of ACAT2a. These evidences indicate that alternative splicing produces two human ACAT2 mRNA variants that encode the novel ACAT2 isoenzymes. Our findings might help to understand the regulation of the ACAT2 gene expression under certain physiological and pathological conditions. 相似文献
9.
Po-Han Chen Chia-I Lee Yu-Tzu Weng Woan-Yuh Tarn Yeou-Ping Tsao Ping-Chang Kuo Pang-Hung Hsu Chu-Wei Huang Chiun-Sheng Huang Hsiu-Hsiang Lee June-Tai Wu Show-Li Chen 《RNA (New York, N.Y.)》2013,19(2):208-218
Here, we show that dBCAS2 (CG4980, human Breast Carcinoma Amplified Sequence 2 ortholog) is essential for the viability of Drosophila melanogaster. We find that ubiquitous or tissue-specific depletion of dBCAS2 leads to larval lethality, wing deformities, impaired splicing, and apoptosis. More importantly, overexpression of hBCAS2 rescues these defects. Furthermore, the C-terminal coiled-coil domain of hBCAS2 binds directly to CDC5L and recruits hPrp19/PLRG1 to form a core complex for splicing in mammalian cells and can partially restore wing damage induced by knocking down dBCAS2 in flies. In summary, Drosophila and human BCAS2 share a similar function in RNA splicing, which affects cell viability. 相似文献
10.
11.
12.
The objective of the present study is to establish a minigene model for studying pre-mRNA alternative splicing. To prepare
the minigene DNA constructs, with human or mouse genomic DNA as templates, GluR-B, FGF-2R and Zis “minigene” fragments were
amplified using PCR and cloned to the eukaryotic expression vectors. The three constructed minigenes and the expression vectors
of Tra2β1 and Zis2 were co-transfected in Hela cells. RT-PCR analysis was performed to semi-quantitatively determine the spliced
products from the minigenes. The results demonstrated that the constructed minigenes are useful in studying the pre-mRNA alternative
splicing in cultured cells. With the established Zis minigene, we for the first time found that Zis2 isoform regulates the
alternative splicing of Zis minigene. 相似文献
13.
14.
15.
Higashide S Morikawa K Okumura M Kondo S Ogata M Murakami T Yamashita A Kanemoto S Manabe T Imaizumi K 《Journal of neurochemistry》2004,91(5):1191-1198
An alternatively spliced form of the presenilin 2 (PS2) gene lacking exon 5 (PS2V) was found in human brains with sporadic Alzheimer's disease. PS2V was induced by hypoxic stress in human neuroblastoma SK-N-SH cells, indicating that hypoxic stress affects the splicing machineries for PS2 exon 5. Here, we identified the critical cis-acting element (sec 2) on the PS2 pre-mRNA responsible for the aberrant splicing of PS2 exon 5 under hypoxic stress conditions. The element was composed of 23 nucleotides in exon 5 and RNA structural analyses showed a stem-loop structure in this sequence. Treatment with an antisense oligonucleotide directed toward the cis-acting element caused an increase in exon 5 inclusion. These results indicate that the sec 2 identified in this study is a novel regulatory element for exon 5 splicing under stress conditions and that trans-acting factors could specifically bind to the element to skip exon 5 of PS2. 相似文献
16.
Andersen FF Tange TØ Sinnathamby T Olesen JR Andersen KE Westergaard O Kjems J Knudsen BR 《Journal of molecular biology》2002,322(4):677-686
Human topoisomerase I interacts with and phosphorylates the SR-family of RNA splicing factors, including ASF/SF2, and has been suggested to play an important role in the regulation of RNA splicing. Here we present evidence to support the theory that the regulation can go the other way around with the SR-proteins controlling topoisomerase I DNA activity. We demonstrate that the splicing factor ASF/SF2 inhibits relaxation by interfering with the DNA cleavage and/or DNA binding steps of human topoisomerase I catalysis. The inhibition of relaxation correlated with the ability of various deletion mutants of the two proteins to interact directly, suggesting that an interaction between the RS-domain of ASF/SF2 and a region between amino acid residues 208-735 on topoisomerase I accounts for the observed effect. Consistently, phosphorylation of the RS-domain with either topoisomerase I or a human cell extract reduced the inhibition of relaxation activity. Taken together with the previously published studies of the topoisomerase I kinase activity, these observations suggest that topoisomerase I activity is shifted from relaxation to kinasing by specific interaction with SR-splicing factors. 相似文献
17.
18.
Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving gamma-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation. 相似文献
19.
Xuexiu Zheng Sunghee Cho Heegyum Moon Tiing Jen Loh Huyn Kyung Oh Michael R. Green Haihong Shen 《RNA (New York, N.Y.)》2014,20(4):440-446
The mouse immunoglobulin (IgM) pre-mRNA contains a splicing inhibitor that bears multiple binding sites for the splicing repressor polypyrimidine tract binding protein (PTB). Here we show that the inhibitor directs assembly of an ATP-dependent complex that contains PTB and U1 and U2 small nuclear RNAs (snRNAs). Unexpectedly, although U2 snRNA is present in the inhibitor complex, it is not base-paired to the branch point. We present evidence that inhibitor-bound PTB contacts U2 snRNA to promote base-pairing to an adjacent branch point–like sequence within the inhibitor, thereby preventing the U2 snRNA–branch point interaction and resulting in splicing repression. Our studies reveal a novel mechanism by which PTB represses splicing. 相似文献