首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immunoliposomes, directed to clinically relevant cell-surface molecules with antibodies, antibody fragments or peptides, are used for site-specific diagnostic evaluation or delivery of therapeutic agents. We have developed intrinsically echogenic liposomes (ELIP) covalently linked to fibrin(ogen)-specific antibodies and Fab fragments for ultrasonic imaging of atherosclerotic plaques. In order to determine the effect of liposomal conjugation on the molecular dynamics of fibrinogen binding, we studied the thermodynamic characteristics of unconjugated and ELIP-conjugated antibody molecules. Utilizing radioimmunoassay and enzyme-linked immunosorbent assay protocols, binding affinities were derived from data obtained at three temperatures. The thermodynamic functions ΔH°, ΔG° and ΔS° were determined from van't Hoff plots and equations of state. The resultant functions indicated that both specific and nonspecific associations of antibody molecules with fibrinogen occurred through a variety of molecular interactions, including hydrophophic, ionic and hydrogen bonding mechanisms. ELIP conjugation of antibodies and Fab fragments introduced a characteristic change in both ΔH° and ΔS° of association, which corresponded to a variable contribution to binding by phospholipid gel-liquid crystal phase transitions. These observations suggest that a reciprocal energy transduction, affecting the strength of antibody-antigen binding, may be a singular characteristic of immunoliposomes, having utility for optimization and further development of the technology.  相似文献   

2.
The interaction of fibrinogen with membrane glycoprotein GPIIb-IIIa regulates platelet aggregation. This ligand:integrin receptor interaction elicits conformational changes in GPIIb-IIIa as evidenced by the induction of ligand-induced binding sites which are recognized by antibodies that react selectively with the occupied receptor. The dynamic nature of these conformational changes is now demonstrated by the identification and characterization of a receptor-induced binding site (RIBS) elicited in fibrinogen bound to GPIIb-IIIa. A monoclonal antibody to fibrinogen, anti-Fg-RIBS-I, failed to bind to nonstimulated platelets in the presence or absence of fibrinogen. However, when platelets were stimulated with an agonist, the antibody reacted with platelet-bound fibrinogen even in the presence of a marked excess of unbound fibrinogen. A key element of the RIBS epitope has been precisely localized to residues 373-385 of the gamma chain of fibrinogen. Conformational elements also are important in defining the epitope. Fab fragments of the antibody inhibited platelet aggregation. As these fragments also inhibited fibrin polymerization, a commonality between these two diverse functions of fibrinogen in thrombus formation is indicated. In general, antibodies to RIBS and ligand-induced binding site provide unique probes for characterizing ligand:receptor interactions.  相似文献   

3.
A new method for the production of monovalent Fab fragments of antibodies has been developed. Traditionally Fab fragments are produced by proteolytic digestion of antibodies in solution followed by isolation of Fab fragments. In the case of monoclonal antibodies against inactivated subunits of glyceraldehyde-3-phosphate dehydrogenase, digestion with papain resulted in significant damage of the binding sites of the Fab fragments. Antigen was covalently attached to the polycation, poly(N-ethyl-4-vinylpyridinium bromide). Proteolysis of monoclonal antibodies in the presence of the antigen-polycation conjugate followed by (i) precipitation induced by addition of polyanion, poly(methacrylic) acid, and pH shift from 7.3 to 6.5 and (ii) elution at pH 3.0 resulted in 90% immunologically competent Fab fragments. Moreover, the papain concentration required for proteolysis was 10 times less in the case of antibodies bound to the antigen-polycation conjugate than that of free antibodies in solution. The digestion of antibodies bound to the antigen-polyelectrolyte complex was less damaging, suggesting that binding to the antigen-polycation conjugate not only protected binding sites of monoclonal antibodies from proteolytic damage but also facilitated the proteolysis probably by exposing antibody molecules in a way convenient for proteolytic attack by papain.  相似文献   

4.
We have shown previously that binding of a monoclonal antibody (MAb) to Tp44 molecules increased the proliferation of anti-CD3-activated T cells by causing enhanced IL 2 receptor expression and IL 2 release. We now show that anti-CD5 (Tp67) antibodies have a similar effect under conditions in which monocytes are suboptimally activated or where monocytes are not present. The activity did not depend on antibody isotype or on the precise CD5 epitope recognized. Functional experiments indicated that both IL 2 production and IL 2 receptor expression were enhanced by antibody binding. Anti-Tp67 and anti-Tp44 appear to augment proliferation through distinct mechanisms, because both antibodies together had greater activity than either antibody alone. In neither system is the Fc portion of the antibody required, because F(ab')2 fragments had activity equivalent to that of the intact antibody and were effective at concentrations as low as 10 ng/ml. Fab fragments of anti-Tp67 were active, but Fab fragments of anti-Tp44 had no effect. Anti-Tp67 and anti-Tp44 were able to sustain continuous proliferation of anti-CD3-Sepharose-stimulated T cells for up to 2.5 wk without exogenous IL 2 or feeder cells. These experiments suggest that Tp67 and Tp44 are receptors that play a critical regulatory role in the control of T cell proliferation.  相似文献   

5.
The Gradiflow, a preparative electrophoresis instrument designed to separate molecules on the basis of their size and charge, was used to purify antibody Fab and F(ab')2 fragments. The method described is charge based, utilizing the difference in the pI between the antibody Fab/F(ab')2 fragments and antibody Fc fragments that occur after enzyme digestion of whole antibody molecules. This method of purification was successful across a range of monoclonal and polyclonal antibodies. In particular, F(ab')2 fragments were purified from a number of mouse monoclonal antibodies (both IgG1 and IgG2a isotypes) and Fab fragments were purified from egg yolk IgY polyclonal antibodies. This is a rapid purification method which has advantages over alternative methods that usually comprise ion exchange and gel filtration chromatography. This method may be applicable to most antibody digest preparations.  相似文献   

6.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

7.
Immunolabeling with immune complexes of primary and secondary antibodies offers an attractive method for detecting and quantifying specific antigen. Primary antibodies maintain their affinity for specific antigen after labeling with Fab fragments in vitro. Incubation of these immune complexes with excess normal serum from the same species as the primary antibody prevents free Fab fragments from recognizing immunoglobulin. Effectively a hybrid between traditional direct and indirect immunolabeling techniques, this simple technique allows primary antibodies to be non-covalently labeled with a variety of reporter molecules as and when required. Using complexes containing Fab fragments that recognize both the Fc and F(ab')2 regions of IgG, we show that this approach prevents nonspecific labeling of endogenous immunoglobulin, can be used to simultaneously detect multiple antigens with primary antibodies derived from the same species, and allows the same polyclonal antibody to be used for both antigen capture and detection in ELISA.  相似文献   

8.
After incubation of F1-stripped everted membrane vesicles with antibodies against subunit c of the ATP synthase of Escherichia coli the proton translocation through the open F0 channel was blocked. Rebinding of F1 to those vesicles is affected by the antibody concentration used. In general, the use of F(ab')2 or Fab fragments prepared from anti-c antibodies gave similar results. However, using Fab fragments a higher amount of antigenic binding sites was necessary to block the F0 complex completely, whereas extremely low amounts of Fab fragments were necessary to inhibit the binding of F1. This can be explained by an antigenic determinant of subunit c, which is only accessible to the smaller Fab fragments with a molecular mass of approximately 50,000. Incubation of F1-containing everted membranes with anti-c antibodies showed that the binding of the antibodies resulted in a displacement of F1, while simultaneously the proton translocation through F0 has been blocked. Such a displacement can only be observed after incubation with IgG molecules or F(ab')2 fragments. Fab fragments were not able to displace the F1 part, indicating that the ability of antibodies and F(ab')2 fragments to produce cross-links is responsible for the loss of F1 from the membranes.  相似文献   

9.
Interaction of the adenovirus penton base protein with alpha v integrins promotes virus entry into host cells. The location of the integrin binding sequence Arg-Gly-Asp (RGD) on human type 2 adenovirus (Ad2) was visualized by cryo-electron microscopy (cryo-EM) and image reconstruction using a mAb (DAV-1) which recognizes a linear epitope, IRGDTFATR. The sites for DAV-1 binding corresponded to the weak density above each of the five 22 A protrusions on the adenovirus penton base protein. Modeling of a Fab fragment crystal structure into the adenovirus-Fab cryo-EM density indicated a large amplitude of motion for the Fab and the RGD epitope. An unexpected finding was that Fab fragments, but not IgG antibody molecules, inhibited adenovirus infection. Steric hindrance from the adenovirus fiber and a few bound IgG molecules, as well as epitope mobility, most likely prevent binding of IgG antibodies to all five RGD sites on the penton base protein within the intact virus. These studies indicate that the structure of the adenovirus particle facilitates interaction with cell integrins, whilst restricting binding of potentially neutralizing antibodies.  相似文献   

10.
Complexes of influenza virus neuraminidase both with antigen-binding (Fab) fragments and with whole monoclonal antibody molecules have been crystallized. Uniformly thin platelet microcrystals suitable for structure analysis by electron diffraction, yielding reflections to approximately 4.3 A resolution, have been grown from one neuraminidase-Fab complex, that of N9 neuraminidase with 32/3 Fab, and thicker crystals of a second neuraminidase-Fab complex (N9 neuraminidase-NC35 Fab) diffract X-rays to approximately 4.0 A resolution. Electron microscope lattice images of microcrystals both of Fab and of immunoglobulin G complexed with neuraminidase have been interpreted in terms of negatively stained images of the respective individual complex protomers. The sites of binding of the antibodies to the antigen are consistent with the notion that single amino acid changes observed in monoclonal variants of neuraminidase occur in binding epitopes for the antibody used for their selection.  相似文献   

11.
The antibody molecule is modular and separate domains can be extracted through biochemical or genetic means. It is clear from review of the literature that a wave of novel, antigen-specific molecular forms may soon enter clinical evaluation. This report examines the developmental histories of therapeutics derived from antigen-specific fragments of antibodies produced by recombinant processes. Three general types of fragments were observed, antigen-binding fragments (Fab), single chain variable fragments (scFv) and “third generation” (3G), each representing a successive wave of antibody fragment technology. In parallel, drug developers have explored multi-specificity and conjugation with exogenous functional moieties in all three fragment types. Despite high hopes and an active pipeline, enthusiasm for differentiating performance of fragments should, perhaps, be tempered as there are yet few data that suggest these molecules have distinct clinical properties due only to their size.Key words: antibody fragments, scFv, Fab, technology development, antibody-drug conjugate  相似文献   

12.
Due to their specificity and versatility in use, bispecific antibodies (BsAbs) are promising therapeutic tools in tomorrow's medicine, provided sufficient BsAb can be produced. Expression systems favoring efficient heterodimerization of intermediate-sized bispecific antibodies will significantly improve existing production methods. Recombinant BsAb can be made by fusing single chain variable fragments (scFv) to a heterodimerization domain. We compare the efficiency of the isolated CL and CH1 constant domains with complete Fab chains to drive heterodimerization of BsAbs in mammalian cells. We found that the isolated CL:CH1 domain interaction was inefficient for secretion of heterodimers. However, when the complete Fab chains were used, secretion of a heterodimerized bispecific antibody was successful. Since the Fab chain encodes a binding specificity on its own, bispecific (BsAb) or trispecific (TsAb) antibodies can be made by C-terminal fusion of scFv molecules to the L or Fd Fab chains. This gave rise to disulphide stabilized Fab-scFv BsAb (Bibody)or Fab-(scFv)2 TsAb (Tribody) of intermediate molecular size. Heterodimerization of the L and Fd-containing fusion proteins was very efficient, and up to 90% of all secreted antibody fragments was in the desired heterodimerized format. All building blocks remained functional in the fusion product, and the bispecific character of the molecules as well as the immunological functionality was demonstrated.  相似文献   

13.
J C Jaton  H Huser  Y Blatt  I Pecht 《Biochemistry》1975,14(24):5308-5311
The near-ultraviolet circular dichroism (CD) of three homogeneous anti-type III pneumococcal antibodies in the absence and the presence of the specific hexasaccharide ligand was studied. In addition recombinations and hybridizations of H and L chains derived from two of these antibodies were carried out and the CD spectra of bound and free reconstituted IgG molecules were measured. The results indicate that the CD spectra of the native antibodies in the 260-310-nm range are very similar in shape and sign and exhibit a positive band at 285 nm. The homologous reconstituted antibody molecules exhibited CD spectra very similar in shape and sign to those of the native antibody molecules although recombinant molecules are no longer stabilized by interchain disulfide bonds. Upon addition of the hexasaccharide ligand, a significant decrease in amplitude of the CD spectra (18-21%) occurred in all three native antibodies and their Fab fragments as well as in the homologous recombinant molecules. No CD spectral changes could be detected upon interaction of the hapten ligand with the heterologous recombinants. All homogeneous antibodies studied exhibited fluorescence quenching upon oligosaccharide binding and a blue shift of the emission maximum. This property allowed the determination of the binding constant of one selected antibody to be made. Taken together, CD and fluorescence spectroscopic data suggest that oligosaccharide ligands induced detectable conformational changes in the Fab fragment of the antibody.  相似文献   

14.
The radiolabelled monoclonal antibody, 5G11, directed against native thrombospondin, has been used to assess the surface expression of secreted thrombospondin on human blood platelets. Emphasis has been placed on studying the role of fibrinogen in this process. Unstimulated platelets bound low amounts of 5G11 (about 2000 molecules/platelet). Binding increased 2-fold and 5-7-fold after stimulation of platelets with ADP or thrombin (or ionophore A23187) respectively. Unstimulated platelets from patients deficient in alpha-granule proteins (gray platelet syndrome) bound baseline levels of 5G11. However, binding was not increased after activation. Thrombospondin expression on thrombin-stimulated normal platelets was for a large part divalent-cation-dependent and was not affected by AP-2, a monoclonal antibody to GPIIb-IIIa complexes. However, binding of 5G11 was some 50% lower when platelets were stimulated in the presence of Fab fragments of a polyclonal rabbit antibody to fibrinogen. This suggested either a direct binding of thrombospondin to surface-bound fibrinogen or a steric inhibition due to a close proximity of the two proteins. The fact that binding of 5G11 was at the lower limit of the normal range to the stimulated platelets of an afibrinogenaemic patient specifically lacking detectable fibrinogen favoured the latter explanation. Thus, a major fibrinogen-independent pathway for thrombospondin expression must exist.  相似文献   

15.
Examinations of the contribution and the specificity of heavy (H) and light (L) chains of natural antibodies to antigen binding may help us to better understand antigen recognition and the development of naive B cells. We previously generated natural Fab antibody fragments reactive to preS1 of HBV using a naive, non-immunized Fab antibody library derived from peripheral B cells of a normal healthy volunteer. We now constructed expression vectors for the Fd (VH + CH1), L chain, and scFv fragments using the sequences encoding parental Fabs as a source of natural antibody genes. The recombinant antibody fragments were expressed as inclusion bodies in E. coli BL21 (DE) cells. When denatured and then refolded, the antibody fragments retained their binding properties. Recombinant L chains and scFvs exhibited three- to 40-fold higher affinities (in the order of 10(7) M(-1)) over the parental Fabs, whereas the affinities of Fds (in the order of 10(5) M(-1)) were much lower compared to the parental Fabs. The results obtained from sandwich ELISA revealed that the L chains bound the virus more efficiently than Fds. Additional experiments were performed to evaluate the specificity of the recombinant fragments for surface proteins of HBV. Fds and L chains were reactive towards HBsAg and the preS2 peptide as well as preS1 and showed patterns of epitope recognition quite different from those of parental Fabs. The data presented here demonstrate that the prominence of the L chain in determining protein binding activity is a property of natural antibodies and is quite unlike the antibodies induced by immunization, and that the specificity of Fab is not determined by the individual antibody chain but by the correct pairing of H and L chain.  相似文献   

16.
We have earlier described a haemagglutination-based assay for on-site detection of antibodies to HIV using whole blood. The reagent in this assay comprises of monovalent Fab fragment of an anti-human RBC antibody fused to immunodominant antigens of HIV-1 and HIV-2. In the present work, we describe a rational and systematic method for directed evolution of scFv and Fab antihuman RBC antibody fragments. Based on homology modeling and germline sequence alignments of antibodies, target residues in the anti-RBC MAb B6 sequence were identified for mutagenesis. A combinatorial library of 107 clones was constructed and subjected to selection on whole RBC under competitive binding conditions to identify several phage-displayed B6 scFv clones with improved binding as determined in an agglutination assay. Selected VL and VH sequences were shuffled to generate a second generation phage-displayed Fab library which on panning yielded Fab clones with several fold better binding than wild type. The mutants with better binding also displayed more Fab molecules per phage particle indicating improved in vivo folding which was also confirmed by their increased periplasmic secretion compared to the wild type. The mutant Fab molecules also showed superior characteristics in large scale production by in vitro folding of LC and Fd. The biophysical measurements involving thermal and chemical denaturation and renaturation kinetics clearly showed that two of the mutant Fab molecules possessed significantly improved characteristics as compared to the wild type B6 Fab. Structural modelling revealed that B6 Fab mutants had increased hydrogen bonding resulting in increased stability. Our approach provides a novel and useful strategy to obtain recombinant antibodies with improved characteristics.Key words: phage display, antibody maturation, Fab, antibody folding, scFv, agglutination  相似文献   

17.
Fragments D1 and DD, plasmic degradation products of human fibrinogen and cross-linked fibrin, respectively, originate from the COOH-terminal domain of the parent molecule. Since a specific binding site for fibrin resides in the COOH-terminal region of the gamma chain, the primary structure of the two fragments was compared and their affinity for fibrin monomer measured. Fragments D1 and DD contained the same segments of the three fibrinogen chains, corresponding to the sequences alpha 105-206, beta 134-461, and gamma 63-411. Fragment DD had a double set of the same chain remnants. Fragments D1 and DD inhibited polymerization of fibrin monomer in a dose-dependent manner; 50% inhibition occurred at a molar ratio of fragment to monomer of 1:1 and 0.5:1, respectively. To prevent fibrin monomer polymerization and render it suitable for binding studies in the liquid phase, fibrinogen was decorated with Fab fragments isolated from rabbit antibodies to human fragment D1. Fibrinogen molecules decorated with 6 molecules of this Fab fragment did not clot after incubation with thrombin, and the decorated fibrin monomer could be used to measure binding of fragments D1 and DD in a homogeneous liquid phase. The data analyzed according to the Scatchard equation and a double-reciprocal plot gave a dissociation constant of 12 nM for fragment D1 and 38 nM for fragment DD. There were two binding sites/fibrin monomer molecule for each fragment. After denaturation in 5 M guanidine HCl, the inhibitory function on fibrin polymerization was irreversibly destroyed. Denatured fragments also lost binding affinity for immobilized fibrin monomer. The preservation of the native tertiary structure in both fragments was essential for the expression of polymerization sites in the structural D domain.  相似文献   

18.
Summary In order to obtain antibodies able to catalyse a peptide synthesis, a naive combinatorial library of human Fab antibody fragments was screened with the phosphonamidate transition state analogue of the reaction. Several Fab fragments were able to bind the analogue. Competitive binding studies performed with molecules containing representative parts of the hapten showed that two Fabs were able to recognize specifically the tetrahedral phosphorus present in the hapten.  相似文献   

19.
We have examined the reactions of a panel of nine monoclonal anti-idiotype antibodies with the surface immunoglobulin in situ on guinea pig L2C leukemic lymphocytes. Equilibrium binding constants were shown to range between 10(7) and 10(8) M-1 for univalent Fab' gamma fragments and between 10(8) and 10(9) M-1 for intact IgG. Saturation of the cell surface binding sites was achieved with 2.9 X 10(5) Fab' gamma molecules/cell and 1.2 X 10(5) IgG molecules/cell for each antibody, a result that is consistent with a bivalent mode of interaction for the IgG. Despite these overall similarities in binding characteristics antibodies showed striking differences in their ability to clear Ig from the cell surface by antigenic modulation in vitro. This suggested differences in the readiness with which the antibodies cross-linked neighboring surface Ig molecules. Such an interpretation was supported by differences in the times required to achieve bivalent binding at 0 degree C, and in the rates at which labeled antibody dissociated from the cell surface in the presence or absence of an excess of unlabeled antibody. The data are consistent with there being two functionally distinct types of anti-idiotype antibody: those that form predominantly intra-Ig bridges, with each antibody Fab being linked to an Fab on one target molecule ("monogamous" binding) and not favoring modulation; and those that form predominantly inter-Ig bridges ("bigamous" binding) and favor modulation. The nature of interaction is presumably dictated by the orientation of the particular idiotope concerned. This distinction could be of great importance in the therapeutic use of anti-idiotype to ablate B cell neoplasms.  相似文献   

20.
The association of an anti-dinitrophenyl monoclonal antibody and its Fab fragment with supported phospholipid monolayers composed of a mixture of dipalmitoylphosphatidylcholine and dinitrophenyl-conjugated dipalmitoylphosphatidylethanolamine has been characterized with total internal reflection fluorescence microscopy. The surface densities of bound antibodies were measured as a function of the antibody and Fab solution concentrations, and as a function of the solution concentration of dinitrophenylglycine. The apparent association constant of Fab fragments with surface-associated haptens was approximately 10-fold lower than the association constant for haptens in solution, and the apparent surface association constant for intact antibodies was only approximately 10-fold higher than the constant for Fab fragments. Data analysis with simple theoretical models indicated that, at most antibody surface densities, 50-90% of membrane-associated intact antibodies were attached to the surface by two antigen binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号