首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cell polarization is necessary for directed migration and leukocyte recruitment to inflamed tissues. Recent progress has been made in defining the molecular mechanisms that regulate chemoattractant-induced cell polarity during chemotaxis, including the contribution of phosphoinositide 3-kinase (PI3K)-dependent phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] synthesis at the leading edge. However, less is known about the molecular composition of the cell rear and how the uropod functions during cell motility. Here, we demonstrate that phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma661), which generates PtdIns(4,5)P(2), is enriched in the uropod during chemotaxis of primary neutrophils and differentiated HL-60 cells (dHL-60). Using time-lapse microscopy, we show that enrichment of PIPKIgamma661 at the cell rear occurs early upon chemoattractant stimulation and is persistent during chemotaxis. Accordingly, we were able to detect enrichment of PtdIns(4,5)P(2) at the uropod during chemotaxis. Overexpression of kinase-dead PIPKIgamma661 compromised uropod formation and rear retraction similar to inhibition of ROCK signaling, suggesting that PtdIns(4,5)P(2) synthesis is important to elicit the backness response during chemotaxis. Together, our findings identify a previously unknown function for PIPKIgamma661 as a novel component of the backness signal that regulates rear retraction during chemotaxis.  相似文献   

2.
Macrophage actin-associated tyrosine phosphorylated protein (MAYP) belongs to the Pombe Cdc15 homology (PCH) family of proteins involved in the regulation of actin-based functions including cell adhesion and motility. In mouse macrophages, MAYP is tyrosine phosphorylated after activation of the colony-stimulating factor-1 receptor (CSF-1R), which also induces actin reorganization, membrane ruffling, cell spreading, polarization, and migration. Because MAYP associates with F-actin, we investigated the function of MAYP in regulating actin organization in macrophages. Overexpression of MAYP decreased CSF-1-induced membrane ruffling and increased filopodia formation, motility and CSF-1-mediated chemotaxis. The opposite phenotype was observed with reduced expression of MAYP, indicating that MAYP is a negative regulator of CSF-1-induced membrane ruffling and positively regulates formation of filopodia and directional migration. Overexpression of MAYP led to a reduction in total macrophage F-actin content but was associated with increased actin bundling. Consistent with this, purified MAYP bundled F-actin and regulated its turnover in vitro. In addition, MAYP colocalized with cortical and filopodial F-actin in vivo. Because filopodia are postulated to increase directional motility by acting as environmental sensors, the MAYP-stimulated increase in directional movement may be at least partly explained by enhancement of filopodia formation.  相似文献   

3.
Huntingtin-interacting protein 1 related (Hip1R) is a novel component of clathrin-coated pits and vesicles and is a mammalian homologue of Sla2p, an actin-binding protein important for both actin organization and endocytosis in yeast. Here, we demonstrate that Hip1R binds via its putative central coiled-coil domain to clathrin, and provide evidence that Hip1R and clathrin are associated in vivo at sites of endocytosis. First, real-time analysis of Hip1R-YFP and DsRed-clathrin light chain (LC) in live cells revealed that these proteins show almost identical temporal and spatial regulation at the cell cortex. Second, at the ultrastructure level, immunogold labeling of 'unroofed' cells showed that Hip1R localizes to clathrin-coated pits. Third, overexpression of Hip1R affected the subcellular distribution of clathrin LC. Consistent with a functional role for Hip1R in endocytosis, we also demonstrated that it promotes clathrin cage assembly in vitro. Finally, we showed that Hip1R is a rod-shaped apparent dimer with globular heads at either end, and that it can assemble clathrin-coated vesicles and F-actin into higher order structures. In total, Hip1R's properties suggest an early endocytic function at the interface between clathrin, F-actin, and lipids.  相似文献   

4.
We report studies of the fission yeast fimbrin-like protein Fim1, which contains two EF-hand domains and two actin-binding domains (ABD1 and ABD2). Fim1 is a component of both F-actin patches and the F-actin ring, but not of F-actin cables. Fim1 cross-links F-actin in vitro, but a Fim1 protein lacking either EF-hand domains (Fim1A12) or both the EF-hand domains and ABD1 (Fim1A2) has no actin cross-linking activity. Overexpression of Fim1 induced the formation of F-actin patches throughout the cell cortex, whereas the F-actin patches disappear in cells overexpressing Fim1A12 or Fim1A2. Thus, the actin cross-linking activity of Fim1 is probably important for the formation of F-actin patches. The overexpression of Fim1 also excluded the actin-depolymerizing factor Adf1 from the F-actin patches and inhibited the turnover of actin in these structures. Thus, Fim1 may function in stabilizing the F-actin patches. We also isolated the gene encoding Acp1, a subunit of the heterodimeric F-actin capping protein. fim1 acp1 double null cells showed more severe defects in the organization of the actin cytoskeleton than those seen in each single mutant. Thus, Fim1 and Acp1 may function in a similar manner in the organization of the actin cytoskeleton. Finally, genetic studies suggested that Fim1 may function in cytokinesis in cooperation with Cdc15 (PSTPIP) and Rng2 (IQGAP), respectively.  相似文献   

5.
Migration of crawling cells (amoebae and some kinds of the tissue cells) is a process related to the dynamic reorganization of actomyosin cytoskeleton. That reorganization engages actin polymerization and de-polymerization, branching of actin network and interaction of myosin II with actin filaments. All those cytoskeleton changes lead to the cell progression, contraction and shifting of the uropod and the cell adhesion. Numerous external stimuli, which activate various surface receptors and signal transduction pathways, can promote migration. Rho family proteins play an important role in the regulation of actin cytoskeleton organization. The most known members of this family are Rho, Rac and Cdc42 proteins, present in all mammalian tissue cells. These proteins control three different stages of cell migration: progression of the frontal edge, adhesion which stabilizes the frontal area, and de-adhesion and shifting of the uropod. Cdc42 and Rac control cell polarization, lamellipodium formation and expansion, organization of focal complexes. Rho protein regulates contractile activity of actomyosin cytoskeleton outside the frontal area, and thus contraction and de-adhesion of the uropod.  相似文献   

6.
Collapsin response mediator proteins (CRMPs) form a family of cytosolic phosphoproteins which are involved in the signal transduction of semaphorin 3A leading to growth cone collapse. These proteins interact with a variety of cytosolic proteins including tubulin heterodimers. Here, we show that CRMP-4 co-localizes with F-actin in regular rib-like structures within lamellipodia of B35 neuroblastoma cells. Furthermore, depolymerization of actin fibers changed the distribution of GFP-CRMP-4 in vivo. In vitro, recombinant CRMP-4 formed homo-oligomers, bound to F-actin and organized F-actin into tight bundles. Both oligomerization and F-actin bundling depended on the C-terminal part of CRMP-4. The stoichiometry of actin and CRMP-4 in bundles was approximately 1:1 and the apparent equilibrium constant of the microfilament-CRMP-4 interaction was estimated from bundling assays as K(app) = 730 mM(-1). CRMP-4 was abundant in the cytosol of B35 neuroblastoma cells and its concentration was measured as approximately 1.7 microM. Overexpression of CRMP-4 inhibited the migration of B35 neuroblastoma cells, while knockdown of CRMP-4 enhanced cell migration and disturbed rib-like actin-structures in lamellipodia. Taken together, our data indicate that CRMP-4 promotes bundling of F-actin in vitro, that it is an important component of rib-like actin bundles in lamellipodia in vivo and that it functionally regulates the actin cytoskeleton in motile cells. These findings suggest a specific regulatory role of CRMP-4 towards the actin cytoskeleton which may by be relevant for growth cone collapse.  相似文献   

7.
Spontaneously migrating Walker carcinosarcoma cells usually form lamellipodia at the front. Combined treatment with 10(-5)M colchicine and 10(-7)M latrunculin A produces large defects in the cortical F-actin layer at the leading front and suppresses lamellipodia. However, the cortical actin layer at the rear is intact and shows myosin IIA accumulation. These cells, showing no or little detectable cortical F-actin at the front and no morphologically recognisable protrusions, migrate faster than control cells with lamellipodia and an intact cortical actin layer. This documents that the cortical actin layer or actin-powered force generation at the front is redundant for locomotion. Colchicine and latrunculin A have synergistic effects in compromising the cortical layer at the front and in increasing the speed of locomotion, but antagonistic effects on the relative amount of F-actin per cell. Colchicine but not latrunculin A, can increase the proportion of polarised and locomoting cells under appropriate conditions. Locomotion and polarity of cells treated with latrunculin A and colchicine is inhibited at latrunculin A concentrations >10(-7)M, by the myosin inhibitor BDM or the ROCK inhibitor Y-27632. Colchicine and Y-27632 have antagonistic effects on polarity and the speed of locomoting cells. The data show that locomotion of metazoan cells, which normally form lamellipodia, can be driven by actomyosin contraction behind the front (cell body, uropod). They are best compatible with a cortical contraction/frontal expansion model, but they are not compatible with models implying that actin polymerisation or actomyosin contraction at the front drive locomotion of the cells studied.  相似文献   

8.
Coordinated actin remodeling is crucial for cell entry into mitosis. The WAVE regulatory complex is a key regulator of actin assembly, yet how the WAVE signaling is regulated to coordinate actin assembly with mitotic entry is not clear. Here, we have uncovered a novel mechanism that regulates the WAVE complex at the onset of mitosis. We found that the Bcr-Abl-stimulated F-actin assembly is abrogated during mitosis. This mitotic inhibition of F-actin assembly is accompanied by an attenuation of Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex. We identified serine 216 of Abi1 as a target of CDK1/cyclin B kinase that is phosphorylated in cells at the onset of mitosis. The Abi1 phosphorylated on serine 216 displayed greatly reduced tyrosine phosphorylation in the hematopoietic cells transformed by Bcr-Abl. Moreover, a phosphomimetic mutation of serine 216 to aspartic acid in Abi1 was sufficient to attenuate Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex and F-actin assembly. Ectopic expression of Abi1 with serine 216 mutations interfered with cell cycle progression. Together, these data show that CDK1-mediated phosphorylation of serine 216 in Abi1 serves as a regulatory mechanism that may contribute to coordinated actin cytoskeleton remodeling during mitosis.  相似文献   

9.
The actin cytoskeleton has been implicated in endocytosis, yet few molecules that link these systems have been identified. Here, we have cloned and characterized mHip1R, a protein that is closely related to huntingtin interacting protein 1 (Hip1). These two proteins are mammalian homologues of Sla2p, an actin binding protein important for actin organization and endocytosis in yeast. Sequence alignments and secondary structure predictions verified that mHip1R belongs to the Sla2 protein family. Thus, mHip1R contains an NH(2)-terminal domain homologous to that implicated in Sla2p's endocytic function, three predicted coiled-coils, a leucine zipper, and a talin-like actin-binding domain at the COOH terminus. The talin-like domain of mHip1R binds to F-actin in vitro and colocalizes with F-actin in vivo, indicating that this activity has been conserved from yeast to mammals. mHip1R shows a punctate immunolocalization and is enriched at the cell cortex and in the perinuclear region. We concluded that the cortical localization represents endocytic compartments, because mHip1R colocalizes with clathrin, AP-2, and endocytosed transferrin, and because mHip1R fractionates biochemically with clathrin-coated vesicles. Time-lapse video microscopy of mHip1R-green fluorescence protein (GFP) revealed a blinking behavior similar to that reported for GFP-clathrin, and an actin-dependent inward movement of punctate structures from the cell periphery. These data show that mHip1R is a component of clathrin-coated pits and vesicles and suggest that it might link the endocytic machinery to the actin cytoskeleton.  相似文献   

10.
Park H  Chan MM  Iritani BM 《FEBS letters》2010,584(24):4923-4932
Most active processes by immune cells including adhesion, migration, and phagocytosis require the coordinated polymerization and depolymerization of filamentous actin (F-actin), which is an essential component of the actin cytoskeleton. This review focuses on a newly characterized hematopoietic cell-specific actin regulatory protein called hematopoietic protein-1 [Hem-1, also known as Nck-associated protein 1-like (Nckap1l or Nap1l)]. Hem-1 is a component of the “WAVE [WASP (Wiskott-Aldrich syndrome protein)-family verprolin homologous protein]” complex, which signals downstream of activated Rac to stimulate F-actin polymerization in response to immuno-receptor signaling. Genetic studies in cell lines and in mice suggest that Hem-1 regulates F-actin polymerization in hematopoietic cells, and may be essential for most active processes dependent on reorganization of the actin cytoskeleton in immune cells.  相似文献   

11.
Clathrin-mediated endocytosis in mammalian cells is critical for a variety of cellular processes including nutrient uptake and cell surface receptor down-regulation. Despite the findings that numerous endocytic accessory proteins directly or indirectly regulate actin dynamics and that actin assembly is spatially and temporally coordinated with endocytosis, direct functional evidence for a role of actin during clathrin-coated vesicle formation is lacking. Here, we take parallel biochemical and microscopic approaches to address the contribution of actin polymerization/depolymerization dynamics to clathrin-mediated endocytosis. When measured using live-cell fluorescence microscopy, disruption of the F-actin assembly and disassembly cycle with latrunculin A or jasplakinolide results in near complete cessation of all aspects of clathrin-coated structure (CCS) dynamics. Stage-specific biochemical assays and quantitative fluorescence and electron microscopic analyses establish that F-actin dynamics are required for multiple distinct stages of clathrin-coated vesicle formation, including coated pit formation, constriction, and internalization. In addition, F-actin dynamics are required for observed diverse CCS behaviors, including splitting of CCSs from larger CCSs, merging of CCSs, and lateral mobility on the cell surface. Our results demonstrate a key role for actin during clathrin-mediated endocytosis in mammalian cells.  相似文献   

12.
The actin filament (F-actin) cytoskeleton associates dynamically with the plasma membrane and is thus ideally positioned to participate in endocytosis. Indeed, a wealth of genetic and biochemical evidence has confirmed that actin interacts with components of the endocytic machinery, although its precise function in endocytosis remains unclear. Here, we use 4D microscopy to visualize the contribution of actin during compensatory endocytosis in Xenopus laevis eggs. We show that the actin cytoskeleton maintains exocytosing cortical granules as discrete invaginated compartments, such that when actin is disrupted, they collapse into the plasma membrane. Invaginated, exocytosing cortical granule compartments are directly retrieved from the plasma membrane by F-actin coats that assemble on their surface. These dynamic F-actin coats seem to drive closure of the exocytic fusion pores and ultimately compress the cortical granule compartments. Active Cdc42 and N-WASP are recruited to exocytosing cortical granule membranes before F-actin coat assembly and coats assemble by Cdc42-dependent, de novo actin polymerization. Thus, F-actin may power fusion pore resealing and function in two novel endocytic capacities: the maintenance of invaginated compartments and the processing of endosomes.  相似文献   

13.
Actin depolymerizing factor-homology (ADF-H) family proteins regulate actin filament dynamics at multiple cellular locations. Herein, we have investigated the function of the ADF-H family member coactosin-like 1 (COTL1) in the regulation of actin dynamics at the T cell immune synapse (IS). We initially identified COTL1 in a genetic screen to identify novel regulators of T cell activation, and subsequently found that it associates with F-actin and localizes at the IS in response to TCR+CD28 stimulation. Live cell microscopy showed that depletion of COTL1 protein impaired T cell spreading in response to TCR ligation and abrogated lamellipodial protrusion at the T cell – B cell contact site, producing only a band of F-actin. Significantly, re-expression of wild type COTL1, but not a mutant deficient in F-actin binding could rescue these defects. In addition, COTL1 depletion reduced T cell migration. In vitro studies showed that COTL1 and cofilin compete with each other for binding to F-actin, and COTL1 protects F-actin from cofilin-mediated depolymerization. While depletion of cofilin enhanced F-actin assembly and lamellipodial protrusion at the IS, concurrent depletion of both COTL1 and cofilin restored lamellipodia formation. Taken together, our results suggest that COTL1 regulates lamellipodia dynamics in part by protecting F-actin from cofilin-mediated disassembly.  相似文献   

14.
Front-rear asymmetry in motile cells is crucial for efficient directional movement. The uropod in migrating lymphocytes is a posterior protrusion in which several proteins, including CD44 and ezrin/radixin/moesin (ERM), are concentrated. In EL4.G8 T-lymphoma cells, Thr567 phosphorylation in the COOH-terminal domain of ezrin regulates the selective localization of ezrin in the uropod. Overexpression of the phosphorylation-mimetic T567D ezrin enhances uropod size and cell migration. T567D ezrin also induces construction of the CD44-associated polar cap, which covers the posterior cytoplasm in staurosporine-treated, uropod-disrupted EL4.G8 cells or in naturally unpolarized X63.653 myeloma cells in an actin cytoskeleton-dependent manner. Rho-associated coiled coil-containing protein kinase (ROCK) inhibitor Y-27632 disrupts the uropod but not the polar cap, indicating that Rho-ROCK signaling is required for posterior protrusion but not for ERM phosphorylation. Phosphorylated ezrin associates with Dbl through its NH2-terminal domain and causes Rho activation. Moreover, constitutively active Q63L RhoA is selectively localized in the rear part of the cells. Thus, phosphorylated ERM has a potential function in establishing plasma membrane "posteriority" in the induction of the uropod in T lymphocytes.  相似文献   

15.
The conserved FER-CIP4 homology (FCH) domain is found in the pombe Cdc15 homology (PCH) protein family members, including formin-binding protein 17 (FBP17). However, the amino acid sequence homology extends beyond the FCH domain. We have termed this region the extended FC (EFC) domain. We found that FBP17 coordinated membrane deformation with actin cytoskeleton reorganization during endocytosis. The EFC domains of FBP17, CIP4, and other PCH protein family members show weak homology to the Bin-amphiphysin-Rvs (BAR) domain. The EFC domains bound strongly to phosphatidylserine and phosphatidylinositol 4,5-bisphosphate and deformed the plasma membrane and liposomes into narrow tubules. Most PCH proteins possess an SH3 domain that is known to bind to dynamin and that recruited and activated neural Wiskott-Aldrich syndrome protein (N-WASP) at the plasma membrane. FBP17 and/or CIP4 contributed to the formation of the protein complex, including N-WASP and dynamin-2, in the early stage of endocytosis. Furthermore, knockdown of endogenous FBP17 and CIP4 impaired endocytosis. Our data indicate that PCH protein family members couple membrane deformation to actin cytoskeleton reorganization in various cellular processes.  相似文献   

16.
Filamin-A (FLNa) has been shown to be a key cross-linker of actin filaments in the leading edge of a motile melanoma cell line, however its role in neutrophils undergoing chemotaxis is unknown. Using a murine transgenic model in which FLNa is selectively deleted in granulocytes, we report that, while neutrophils lacking FLNa show normal polarization and pseudopod extension, they exhibit obvious defects in uropod retraction. This uropod retraction defect was found to be a direct result of reduced FLNa mediated activation of the small GTPase RhoA and myosin mediated actin contraction in the FLNa null cells. This results in a neutrophil recruitment defect in FLNa null mice. The compensatory increase in FLNb levels that was observed in the FLNa null neutrophils may be sufficient to compensate for the lack of FLNa at the leading edge allowing for normal polarization, however this compensation is unable to regulate RhoA activated tail retraction at the rear of the cell.  相似文献   

17.
Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2''s action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.  相似文献   

18.
Protein kinase C regulates endocytosis and recycling of E-cadherin   总被引:5,自引:0,他引:5  
E-cadherin is a major component ofadherens junctions in epithelial cells. We showed previously that apool of cell surface E-cadherin is constitutively internalized andrecycled back to the surface. In the present study, we investigated thepotential role of protein kinase C (PKC) in regulating the traffickingof surface E-cadherin in Madin-Darby canine kidney cells. Using surface biotinylation and immunofluorescence, we found that treatment of cellswith phorbol esters increased the rate of endocytosis of E-cadherin,resulting in accumulation of E-cadherin in apically localized early orrecycling endosomes. The recycling of E-cadherin back to the surfacewas also decreased in the presence of phorbol esters. Phorbolester-induced endocytosis of E-cadherin was blocked by specificinhibitors, implicating novel PKC isozymes, such as PKC- in thispathway. PKC activation led to changes in the actin cytoskeletonfacilitating E-cadherin endocytosis. Depolymerization of actinincreased endocytosis of E-cadherin, whereas the PKC-induced uptake ofE-cadherin was blocked by the actin stabilizer jasplakinolide. Ourfindings show that PKC regulates vital steps of E-cadherin trafficking,its endocytosis, and its recycling.

  相似文献   

19.
20.
Rho SB  Chun T  Lee SH  Park K  Lee JH 《FEBS letters》2004,557(1-3):57-63
Thymosin beta-10 (TB10) is a small G-actin binding protein that induces depolymerization of intracellular F-actin pools by sequestering actin monomers. Previously, we demonstrated that overexpression of TB10 in ovarian tumor cells increased the rate of cell death. As an initial step to define molecular mechanism of TB10-dependent apoptotic process in ovarian tumor cells, we searched a human ovary cDNA library for a novel TB10 binding protein using a yeast two-hybrid system. The selected protein was human E-tropomodulin (E-Tmod), another component of the actin binding proteins. Subsequently, two interacting protein components were determined quantitatively. Results showed that the full-length TB10 is required to bind with E-Tmod, and the TB10 binding site on E-Tmod partially overlaps with the actin binding site on E-Tmod. Moreover, introduction of E-Tmod cDNA into a tumor cell line reversed TB10 mediated apoptosis and restored actin architectures. These results may suggest that TB10 regulates apoptotic homeostasis by not only just binding to actin but also competing or blocking the protein complex formation of E-Tmod with actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号