首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt has been made to assess quantitatively genetic risk of radiation for man based on mammalian (mostly mouse) data and using the direct method proposed by UNSCEAR. The parameter employed was induction of reciprocal translocations. Two assumptions were made: human radiosensitivity equals that of the mouse; and dose-response is linear. From observations with acute gamma irradiation the estimate of risk per 10(-2) Gy was as follows: 39 translocation heterozygotes are expected among one million F1 conceptions, 5 cases of multiple congenital anomalies, 25 abortions recorded and 49 unrecorded. Chronic gamma irradiation at dose rates of 1.3 X 10(-5), 1.7 X 10(-4) and 1.0 X 10(-4) Gy/min was 3 to 10 times less effective. Exposure to 4.2 GeV deuterons proved inferior in effectiveness to gamma irradiation. Chronic exposure to 4.1 MeV neutrons delivered at 8 X 10(-4) Gy/min showed 7 times the effectiveness of chronic gamma irradiation. Administration of tritiated water (from 37 to 37 X 10(2) kBq/g b.w.) to rats entailed a risk of the same order of magnitude as external chronic gamma irradiation. Reduction of genetic risk was achieved by pretreatment with either AFT-, ATP-serotonin mixtures or the molecular combinations, Adeturon and Cytriphos. Study of interspecies differences in genetic radiosensitivity showed decline in the following order: rat-rabbit-mouse-Syrian hamster. A dose-rate effect was most clearly seen in the rat, and least clearly in the rabbit. In female mice, examination of oocyte depletion indicated primary follicles to be highly susceptible to acute gamma irradiation; decrease in sensitivity was observed beginning with stage 4. Chronic gamma irradiation was found to be less effective.  相似文献   

2.
Within short-terms after exposure to ionizing radiation, CBA and C57Bl/6 male mice were found not only to retain but also to enhance their attractiveness to chemosignals of intact males of the same genotype (syngenic). It was shown that the time period of higher attractiveness increased with the absorbed dose (from 1 to 6 Gy). Within several days after exposure to 6-Gy irradiation, male mice were temporarily unable to discriminate between chemosignals of syngenic and allogenic (alien genotype) individuals. Unlike male mice of the CBA strain, male mice of the C57Bl/6 strain displayed no changes after exposure to 1-Gy irradiation, but the effect of 2-6 Gy was more persistent. These phenomena can be explained by the lower olfactory reactivity combined with higher radiosensitivity of C57Bl/6 mice. Irradiated male mice temporarily lost their olfactory ability to discriminate the genotype of females' volatile secretions and to distinguish between females' and males' volatile secretions.  相似文献   

3.
Earlier we have established the genetic effects of low dose chronic irradiation in bank vole (somatic and germ cells, embryos), in pond carp (fertilized eggs, embryos, fry) and in laboratory mice (somatic and germ cells) in the range of doses from near-background to 10 cGy. These low dose effects observed in mammals and fish are not expected from extrapolation of high dose experiments. For understanding reasons this discrepancy the comparative analysis of genetic efficiency of low dose chronic irradiation and the higher doses of acute irradiation was carried out with natural populations of bank vole which inhabited the two sites differing in ground of radionuclide deposition. For comparing efficiency the linear regression model of dose-effect curve was used. Dose-effect equations were obtained for animals from two chronically irradiated bank vole populations. The mean population absorbed doses were in the range 0.04-0.68 cGy, the main part of absorbed doses consisted of external radiation of animals exposed to 137Cs gamma-rays. Dose-effect equations for acute irradiation to 137Cs gamma-rays (10-100 cGy) were determined for the same populations. Comparison of genetic efficiency was made by extrapolation, using regression coefficient beta and doubling dose estimation. For chronic exposure the doubling doses calculated from low-dose experiments are 0.1-2 cGy and the doubling doses determined from high-dose experiments are in the range of 5-20 cGy. Our hypothesis that the doubling dose estimate is calculated in higher-dose ionizing radiation experiments should be much higher than the deduced from the low dose line regression equation was verified. The doubling dose estimates for somatic cells of bank vole and those for germ cells of laboratory mice are in close agreement. The radiosensitivity of bank vole chromosomes were shown is practically the same as that for human lymphocytes since doubling dose estimates for acute irradiation close to each other. For low LET radiation a higher genetic efficiency of chronic low doses in comparison with the higher doses of acute gamma-irradiation (137Cs source) was proved by three methods.  相似文献   

4.
The genomic instability (GI) in somatic cells of the progeny (F1 generation) of male mice chronically exposed to low-dose gamma-radiation was studied by comparative analysis of chromosome damage. BALB/C male mice exposed to 0.1 Gy (0.01 Gy/day) and 0.5 Gy (0.01 and 0.05 Gy/day) were mated with unirradiated females 15 days after irradiation. For comparison of radiosensitivity, two-month-old males, the descendants of irradiated and unirradiated animals, were subjected to irradiation with a dose of 1.5 Gy (0.47 Gy/min) from a 60Co source. GI was revealed by the standard scheme of adaptive response. The experiments indicated that, by using the test "adaptive response", it is possible to detect the transition of gamma-radiation-induced genomic instability in sex cells of male parent into somatic cells of mice (F1 generation) either from changes in radiosensitivity or by the absence of the adaptive response induced by a standard scheme.  相似文献   

5.
The spontaneous level of blood lymphocytes with micronuclei (MN), the sensitivity to 1.0 Gy irradiation and adaptive response (AR) after adaptive irradiation with a dose of 0.05 Gy 5 hr later have been studied in children population living in different districts of Moscow. It was shown that spontaneous frequency of cells with MN, the sensitivity to 1.0 Gy acute irradiation and the AR manifestation have significant differences in samples taken from children living in different districts. The individual variability is significant also. In each group of children the individuals with the enhanced radiosensitivity after adaptive irradiation have been observed. In conformance with the data of radioecological inspection the radiation situation in different Moscow districts is quite safe on overage but in some districts the spontaneous level of lymphocytes with MN, and radiosensitivity after 0.05 Gy irradiation were enhanced, the AR was not found.  相似文献   

6.
CFU-DC in the bone marrow of CBA and BALB/c mice, which are contrast in total radiosensitivity, have close characteristics: D0 is 1.35 and 1.32 Gy, respectively. The proliferation rate of CFU-DC after single exposure to a non-lethal dose of 4 Gy is higher in CBA than in BALB/c mice. The time of doubling the CFU-DC population during the period of exponential growth after irradiation is 40 and 72 h for CBA and BALB/c mice, respectively.  相似文献   

7.
The genetic effect of incorporated radiocarbon was studied after single, long-term (33 days) and chronic (6 and 12 months) treatment of male mice (CBA X C57B1) F1 with [14C]glucose. The genetic effect in male germ cells was estimated by 3 tests: DLM frequency in post- and pre-meiotic cells, RT frequency in stem spermatogonia and frequency of abnormal sperm heads. Absorbed doses in the gonads were: 0.22, 0.50 and 1.01 Gy, after a single exposure; 0.74 and 1.47 Gy, after long-term exposures; and 0.006 and 0.031 Gy, after chronic exposure for 6 months; and 0.013 and 0.066 Gy, for 12 months. The results suggest that DLM frequency in post-meiotic cells increased linearly with increasing the dose of 14C single and long-term exposures at a dose of 1.47 Gy only. A chronic treatment with [14C]glucose induced no increase in DLM frequency. RT frequency in stem spermatogonia was statistically significantly higher than the control level after the single and long-term exposure to 14C. A comparison of the results with the results of external single and chronic gamma-irradiation allows the conclusion that the relative genetic efficiency of radiocarbon as compared with that of gamma-rays is about 1.  相似文献   

8.
K Hoshino  Y Kameyama 《Teratology》1988,37(3):257-262
Pregnant ICR mice were treated with single whole-body X-radiation at a dose of 0.24 Gy on day 10, 13, or 15 of gestation. Fetuses were obtained from mothers during 1 and 24 hours after irradiation. Pyknotic cells in the ventricular zone of telencephalon were counted in serial histological sections. Incidence of pyknotic cells peaked during 6 and 9 hours after irradiation in each gestation day group. Then, dose-response curves were obtained 6 hours after 0-0.48 Gy of irradiation. All three dose-response curves showed clear linearity in the dose range lower than 0.24 Gy. Ratios of radiosensitivity estimated from the slopes of dose-response curves in day 10, 13, and 15 groups were 1, 1.4, and 0.4, respectively. These demonstrated that ventricular cells in the day 13 fetal telencephalon were the most radiosensitive among the three different age groups. In order to confirm the presence of the highly radiosensitive stage common to mammalian cerebral cortical histogenesis, pregnant F344 rats were treated with single whole-body gamma-irradiation at a dose of 0.48 Gy on day 13, 14, 15, 17, or 19 of gestation. The incidence of pyknotic cells in the ventricular zone of telencephalon was examined microscopically during 1 and 24 hours after irradiation. The peak incidence was shown 6 hours after irradiation in all the treated groups, and the highest peak incidence was shown in day-15-treated group. The developmental stage of telencephalon of day 15 rat fetuses was comparable to that of day 13 mouse fetuses. Thus, the highest radiosensitivity in terms of acute cell death was shown in the same developmental stage of brain development, i.e., the beginning phase of cerebral cortical histogenesis, in both mice and rats.  相似文献   

9.
Acute low-dose irradiation (0.1-1 Gy, 1.33 Gy/min) of cells of a human glioblastoma cell line, A-172, induced a dose-dependent monophasic accumulation of TP53 (formerly known as p53) and CDKN1A (formerly known as WAF1). In contrast, chronic gamma irradiation (0.001 Gy/min) produced a clear biphasic response of accumulation TP53 with the first peak at 1.5 h (0.09 Gy) and the second peak at 10 h (0.54 Gy). Significantly, when the cells were preirradiated with a chronic dose of gamma irradiation for 24 h (1.44 Gy) or 50 h (3 Gy), they no longer responded to an acute challenging dose to produce a dose-dependent response of the TP53 pathway. These findings suggest that chronic irradiation at low dose rate alters the TP53-dependent signal transduction pathway. Wearing away of the TP53 pathway by chronic exposure to radiation may have important implications for radiation protection.  相似文献   

10.
A study was made of the effect of high radioactive contamination on the animal organism (C57BL/6 mice) and HeLa cell culture within the ten-kilometer zone of the Chernobyl A.P.S. accident. The total radiation dose, as calculated by a gamma-component, was 0.09 to 2 Gy. A long-term exposure of mice within the zone (cumulative dose of 1.8 to 2 Gy) caused a significant decrease in bone marrow stem potencies and changes in the brain vascular system; subsequent acute exposure of animals increased interferon titres in the serum to a much greater extent than a single acute exposure did. As to HeLa cells, irradiation there of with doses of 0.09 to 0.4 Gy during 15-20 postirradiation generations caused a decrease in the proliferative activity, an emergence of cells with micronuclei and of giant cells, and remote cell death.  相似文献   

11.
The incidence of chromosome aberrations in bone marrow cells of femur did not exceed the spontaneous one in CBA mice exposed, during 70 days, to gamma-radiation at dose--rates of 33.7-35.8 nA/kg and cumulative dose of 2.75 Gy. A single acute exposure of intact animals to a dose of 2.98 Gy increased significantly the mutation level. Preirradiation with small doses increased the resistance of hereditary structures to sublethal radiation doses. Exogenous alpha-tocopherol (0.06 mg/20 g mass) protected the genetic apparatus of cells from total-body irradiation and was an additional factor decreasing the mutation level after acute exposure of mice at the background of long-term irradiation with small doses.  相似文献   

12.
Mice exposed to gamma-quanta during 47 and 82 days at a dose-rate of 1.3 mGy/h and cumulative doses of 1.45 and 2.54 Gy, respectively, were subsequently subjected to a single acute irradiation with a dose of 20 Gy. Repair of DNA damages induced by the acute exposure was shown to proceed in the brain, pulmonary and splenic tissues of chronically exposed mice more readily than in the tissues of mice not subjected to chronic irradiation. The data obtained indicate that the induced adaptive response activates DNA repair in tissues of mice exposed to long-term low-level radiation.  相似文献   

13.
We have investigated the effect of the adaptive response on acute myeloid leukemia (AML) induced in CBA/Harwell mice by a chronic radiation exposure. Groups of mice irradiated with a total dose of 1. 0 Gy at two different chronic dose rates (0.5, 0.004 Gy/h) had similar frequencies of AML. Compared to control animals that did not develop AML, irradiation at either of these dose rates did not change the longevity of the mice that did not die of leukemia. The survival rates of irradiated mice that did develop leukemia in the two groups were not different from each other, indicating that the dose rates produced similar responses and therefore were both chronic exposures. We then tested the ability of a chronic 10-cGy (0. 5 Gy/h) exposure to ionizing radiation, mild hyperthermia (40.5 degrees C whole-body, 60 min) or treatment with interleukin-1 (1500 U i.p.) to induce an adaptive response and modify the frequency or latency of AML which resulted from a subsequent (24 h later) 1.0-Gy (0.5 Gy/h) chronic radiation exposure. The frequency of radiation-induced leukemia was not changed in mice given any of the three adapting treatments 24 h prior to the chronic 1.0-Gy dose that induced leukemia. However, the latent period for development of AML was significantly increased by both the prior low radiation dose and mild hyperthermia treatment. Injection of interleukin-1, in contrast, may have reduced the latent period. Similar to the single 1.0-Gy chronic exposure alone, none of the adapting treatments prior to that exposure influenced the survival of animals that did not develop AML. These results indicate that an earlier exposure to a small adapting dose of radiation or to a mild heat stress can influence secondary steps in radiation-induced carcinogenesis.  相似文献   

14.

Transgenerational genomic instability in the first generation offspring of mice exposed to lowintensity infrared laser (632.8 nm) and light-emitting-diode infrared irradiation (850 nm) was investigated in vivo. It was found that the level of spontaneous damage in bone marrow according to the micronucleus test, the level of reactive oxygen species in whole blood, and the mass index of lymphoid organs in all of the descendants of irradiated mice did not increase. After additional X-ray exposure of the progeny at a dose rate of 1.5 Gy, a decrease in the level of damage and the absence of an adaptive response were revealed upon testing according to “radiosensitivity” and the radiation-induced adaptive-response scheme (0.1 + 1.5 Gy), respectively, compared to the descendants of nonirradiated mice. The rate of tumor growth in the offspring of irradiated mice did not differ from that in the descendants of nonirradiated mice, although inhibition of the tumor growth rate was observed in their irradiated parents. The survival rate after irradiation at a dose rate of 6.5 Gy did not differ from both the parents and the control.

  相似文献   

15.
We previously described an enhanced sensitivity for cell killing and G(1)-phase cell cycle arrest after acute gamma irradiation in primary fibroblast strains derived from 14 hereditary-type retinoblastoma family members (both affected RB1(+/-) probands and unaffected RB1(+/+) parents) as well as distinctive gene expression profiles in unirradiated cultures by microarray analyses. In the present study, we measured the colony formation ability of these cells after exposure to continuous low-dose-rate (0.5-8.4 cGy/h) (137)Cs gamma radiation for a 2-week growth period. Fibroblasts from all RB family members (irrespective of RB1 genotype) and from 5 of 18 apparently normal Coriell cell bank controls were significantly more radiosensitive than the remaining apparently normal controls. The average dose rates required to reduce relative survival to 10% and 1% were approximately 3.1 and 4.7 cGy/h for the Coriell control strains with normal radiosensitivity and approximately 1.4 and 2.5 cGy/h for the radiosensitive RB family member and remaining apparently normal Coriell control strains. The finding that a significant proportion of fibroblast strains derived from apparently normal individuals are sensitive to chronic low-dose-rate irradiation indicates such individuals may harbor hypomorphic genetic variants in genomic maintenance and/or DNA repair genes that may likewise predispose them or their children to cancer.  相似文献   

16.
Changes in the expression of genes implicated in oxidative stress and in extracellular matrix (ECM) remodeling and selected protein expression profiles in mouse skin were examined after exposure to low-dose-rate or high-dose-rate photon irradiation. ICR mice received whole-body γ rays to total doses of 0, 0.25, 0.5 and 1 Gy at dose rates of 50 cGy/h or 50 cGy/min. Skin tissues were harvested for characterization at 4 h after irradiation. For oxidative stress after low-dose-rate exposure, 0.25, 0.5 and 1 Gy significantly altered 27, 23 and 25 genes, respectively, among 84 genes assessed (P < 0.05). At doses as low as 0.25 Gy, many genes responsible for regulating the production of reactive oxygen species (ROS) were significantly altered, with changes >2-fold compared to 0 Gy. For an ECM profile, 18-20 out of 84 genes were significantly up- or downregulated after low-dose-rate exposure. After high-dose-rate irradiation, of 84 genes associated with oxidative stress, 16, 22 and 22 genes were significantly affected after 0.25, 0.5 and 1 Gy, respectively. Compared to low-dose-rate radiation, high-dose-rate exposure resulted in different ECM gene expression profiles. The most striking changes after low-dose-rate or high-dose-rate exposure on ECM profiles were on genes encoding matrix metalloproteinases (MMPs), e.g., Mmp2 and Mmp15 for low dose rate and Mmp9 and Mmp11 for high dose rate. Immunostaining for MMP-2 and MMP-9 proteins showed radiation dose rate-dependent differences. These data revealed that exposure to low total doses with low-dose-rate or high-dose-rate photon radiation induced oxidative stress and ECM-associated alterations in gene expression profiles. The expression of many genes was differentially regulated by different total dose and/or dose-rate regimens.  相似文献   

17.
Currently, there is a serious absence of pharmaceutically attractive small molecules that mitigate the lethal effects of an accidental or intentional public exposure to toxic doses of ionizing radiation. Moreover, cellular systems that emulate the radiobiologically relevant cell populations and that are suitable for high-throughput screening have not been established. Therefore, we examined two human pluripotent embryonal carcinoma cell lines for use in an unbiased phenotypic small interfering RNA (siRNA) assay to identify proteins with the potential of being drug targets for the protection of human cell populations against clinically relevant ionizing radiation doses that cause acute radiation syndrome. Of the two human cell lines tested, NCCIT cells had optimal growth characteristics in a 384 well format, exhibited radiation sensitivity (D(0) = 1.3 ± 0.1 Gy and ? = 2.0 ± 0.6) comparable to the radiosensitivity of stem cell populations associated with human death within 30 days after total-body irradiation. Moreover, they internalized siRNA after 4 Gy irradiation enabling siRNA library screening. Therefore, we used the human NCCIT cell line for the radiation mitigation study with a siRNA library that silenced 5,520 genes known or hypothesized to be potential therapeutic targets. Exploiting computational methodologies, we identified 113 siRNAs with potential radiomitigative properties, which were further refined to 29 siRNAs with phosphoinositide-3-kinase regulatory subunit 1 (p85α) being among the highest confidence candidate gene products. Colony formation assays revealed radiation mitigation when the phosphoinositide-3-kinase inhibitor LY294002 was given after irradiation of 32D cl 3 cells (D(0) = 1.3 ± 0.1 Gy and ? = 2.3 ± 0.3 for the vehicle control treated cells compared to D(0) = 1.2 ± 0.1 Gy and ? = 6.0 ± 0.8 for the LY294002 treated cells, P = 0.0004). LY294002 and two other PI3K inhibitors, PI 828 and GSK 1059615, also mitigated radiation-induced apoptosis in NCCIT cells. Treatment of mice with a single intraperitoneal LY294002 dose of 30 mg/kg at 10 min, 4, or 24 h after LD(50/30) whole-body dose of irradiation (9.25 Gy) enhanced survival. This study documents that an unbiased siRNA assay can identify new genes, signaling pathways, and chemotypes as radiation mitigators and implicate the PI3K pathway in the human radiation response.  相似文献   

18.
(C57Bl/Cne X C3H/Cne)F1 male mice were irradiated with single acute doses of 0.4 MeV neutrons ranging from 0.05 to 2 Gy, and testis cell suspensions were prepared for cytometric analysis of the DNA content 2-70 days after irradiation. Various cell subpopulations could be identified in the control histogram including mature and immature spermatids, diploid spermatogonia and spermatocytes, tetraploid cells and cells in the S-phase. Variations in the relative proportions of different cell types were detected at each dose and time, reflecting lethal damage induced on specific spermatogenetic stages. The reduction of the number of elongated spermatids 28 days after irradiation was shown to be a particularly sensitive parameter for the cytometrical assessment of the radiosensitivity of differentiating gonia. A D0 value of 0.13 Gy was calculated and compared with data obtained after X-irradiation, using the same experimental protocol. In the latter case a biphasic curve was obtained over the dose range from 0.25 to 10 Gy, possibly reflecting the existence of some cell population heterogeneity. RBE values were estimated at different neutron doses relative to the radiosensitive component of the X-ray curve, and ranged from 3.3 to 4, in agreement with data in the literature. Genotoxic effects were monitored 7 days after irradiation by a dose-dependent increase of the coefficient of variation (CV) values of the round spermatid peak, reflecting the induction of numerical and structural chromosome aberrations, and 14 or 21 days after irradiation by the detection of diploid elongated spermatids, probably arising from a radiation-induced complete failure of the first or second meiotic division.  相似文献   

19.
The paper summarizes the results of studies of 85 individuals exposed in the Southern Ural region. The spontaneous frequency of the cells with micronuclei (MN) in a population of human blood lymphocytes after PHA stimulation and cytokinetic block with cytochalasin B has been determined. The sensitivity of lymphocytes to the irradiation at the dose of 1.0 Gy and the adaptive response (AR) after the irradiation at the low adaptive dose of 0.05 Gy, and the challenge dose of 1.0 Gy 5 h later have been studied too. It was shown that the peculiarity of the Urals population consists in a higher individual variability of the frequency of cells with MN in all groups have been investigated (spontaneous, after acute irradiation in the dose 1.0 Gy) in comparison with Moscow people. The proportion of persons with a significant AR in the Urals groups was considerably lower than that identified among Moscow residents, and the number of persons with enhanced radiosensitivity increased following low-dose irradiation. We can suppose that prolonged action of low level radiation with another ecological factors, living in the contaminated regions result in the enhancement of the sensitivity to the genotoxic agents in the separate individuals.  相似文献   

20.
In order to examine if differences in activity and inducibility of antioxidative enzymes in rat cerebral cortex and hippocampus are underlying their different sensitivity to radiation, we exposed four-day-old female Wistar rats to cranial radiation of 3 Gy of gamma-rays. After isolation of hippocampus and cortex 1 h or 24 h following exposure, activities of copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT) were measured and compared to unirradiated controls. MnSOD protein levels were determined by SDS-PAGE electrophoresis and Western blot analysis. Our results showed that CuZnSOD activity in hippocampus and cortex was significantly decreased 1 h and 24 h after irradiation with 3 Gy of gamma-rays. MnSOD activity in both brain regions was also decreased 1 h after irradiation. 24 h following exposure, manganese SOD activity in hippocampus almost achieved control values, while in cortex it significantly exceeded the activity of the relevant controls. CAT activity in hippocampus and cortex remained stable 1 h, as well as 24 h after irradiation with 3 Gy of gamma-rays. MnSOD protein level in hippocampus and cortex decreased 1 h after irradiation with 3 Gy of gamma-rays. 24 h after exposure, MnSOD protein level in cortex was similar to control values, while in hippocampus it was still significantly decreased. We have concluded that regional differences in MnSOD radioinducibility are regulated at the level of protein synthesis, and that they represent one of the main reasons for region-specific radiosensitivity of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号