首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.  相似文献   

2.
Subalpine larch (Larix lyallii Parl.) and western larch (Larix occidentalis Nutt.) represent two closely related species with contrasting abundance and distribution patterns in Western North America. Genetic diversity at seven informative microsatellite loci was determined for 19 populations of subalpine larch and nine populations of western larch. Contrasting genetic diversity and patterns of population differentiation were observed between the two species. The overall within-population genetic diversity parameters were lower in subalpine larch (A = 3.2; A(P) = 3.6; H(E) = 0.418) than in western larch (A(P) = 5.51; H(E) = 0.580), a pattern that is likely related to historical or demographic factors. No evidence of interspecific hybridization was observed. Significantly more population differentiation (theta = 0.15; R(ST) = 0.07), consistent with more restricted gene flow, was observed for subalpine larch as compared to western larch (theta = 0.05; R(ST) = 0.04). Under the assumption of an infinite allele mutation model, 12 of the 19 subalpine larch populations showed signs of deviation from the mutation-drift equilibrium, which suggests Holocene population bottlenecks and fluctuations in effective population size for this species. None of the western larch populations deviated significantly from the mutation-drift equilibrium. For both species, Mantel's test revealed a significant positive relationship between geographical and genetic distances indicative of isolation by distance. A similar geographical structure was detected in both species, suggesting at least two genetically distinct glacial populations in each species. The various implications for gene conservation are discussed.  相似文献   

3.
Onyabe DY  Conn JE 《Molecular ecology》2001,10(11):2577-2591
Ten microsatellite loci, four located within and six outside chromosome inversions, were employed to study the genetic structure of Anopheles arabiensis across the ecological zones of Nigeria (arid savannah in the north gradually turns into humid forest in the south). Regardless of location within or outside inversions, genetic variability at all loci was characterized by a reduction in both the number of alleles per locus and heterozygosity from savannah to forest. Across all loci, all but one allele in the forest also occurred in the savannah, whereas at least 78 alleles in the savannah were missing in the forest. Genetic differentiation increased with geographical distance; consequently, genetic distances between zones exceeded those within zones. The largest genetic distances were between localities at the extremes of the transect (range F(ST) = 0.196-0.258 and R(ST) = 0.183-0.468) and were as large as those between A. arabiensis and Anopheles gambiae s.s. Gene flow across the country was very low, so that Nm between the extremes of the transect was < 1. These data suggest that A. arabiensis has extended its range from the savannah into the forest during which it experienced a reduction in effective population size due to sequential founder effects. Gene flow post range expansion appears too restricted by geographical distance to homogenize the gene pool of A. arabiensis across Nigeria.  相似文献   

4.
To assess the population genetic structure of the three-spined stickleback, Gasterosteus aculeatus, variability at 18 microsatellite loci was examined in 1724 individuals from 74 locations covering most of the species distribution range in Europe. The results revealed high overall degree of differentiation (F(ST) = 0.21) but contrasting level of divergence and genetic variability between habitat types. Marine populations were genetically relatively uniform even across great geographical distances as compared to substantial differentiation among freshwater populations. Analysis of molecular variance indicated low but significant (2.7%) variation in allele frequencies between geographical regions, but a negligible effect of habitat type (0.2%). The phylogenetic pattern was not explained by habitat type, but a weak signal of populations clustering according to geographical or water system origin was found. The results support the view that three-spined stickleback marine ancestors colonized northern European fresh waters during the postglacial marine submergence c. 10,000 years ago, whereas in the Mediterranean region colonization probably dates back to the Pleistocene. The independent origins of river and lake populations indicate that they originate from multiple colonizations rather than sharing common ancestry. In the continuous marine environment, the low degree of differentiation among populations can be explained by gene flow among subpopulations and large effective population size buffering divergence in neutral markers. In contrast, among postglacially established freshwater populations differentiation appears to be driven by genetic drift and isolation. The stepwise mutations appear to have contributed to the population differentiation in the southern part of the three-spined stickleback distribution range.  相似文献   

5.
Genetic variation at 19 allozyme (including 11 polymorphic) and 10 microsatellite loci was examined in the population samples of odd- and even-broodline pink salmon from the southern part of Sakhalin Island, Southern Kuril Islands, and the northern coast of the Sea of Okhotsk. The estimates of relative interpopulation component of genetic variation over the allozyme loci, per broodline, were on average 0.43% (GST), while over the microsatellite loci it was 0.26% (the theta(ST) coefficient, F-statistics based on the allele frequency variance), and 0.90% (the rho(ST) coefficient, R-statistics based on the allele size variance). The values of interlinear component constituted 2.34, 0.31, and 1.05% of the total variation, respectively. Using the allozyme loci, statistically significant intralinear heterogeneity was demonstrated among the regions, as well as among the populations of Southern Sakhalin Island. Multivariate scaling based on the allozyme data demonstrated regional clustering of the sample groups, representing certain populations during the spawning run or in different years. Most of the microsatellite loci examined were found to be highly polymorphic (mean heterozygosity > 0.880). The estimates of interlinear, interregional, and interpopulation variation over these loci in terms of theta(ST) values were substantially lower than in terms of rho(ST) values. Regional genetic differentiation, mostly expressed at the allozyme loci among the populations from the northern and southern parts of the Sea of Okhotsk (i.e., between the Sakhalin and Kuril populations), was less expressed at the microsatellite loci. The differentiation between these regions observed can be considered as the evidence in favor of a large-scale isolation by distance characterizing Asian pink salmon. It is suggested that in pink salmon, low genetic differentiation at neutral microsatellite loci can be explained by extremely high heterozygosity,of the loci themselves, as well as by the migration gene exchange among the populations (the estimate of the genetic migration coefficient inferred from the "private" allele data constituted 2.6 to 3.4%), specifically, by the ancient migration exchange, which occurred during postglacial colonization and colonization of the range.  相似文献   

6.
On the island of Schiermonnikoog (The Netherlands), the breeding population of oystercatchers can be divided into two groups: 'residents' and 'leapfrogs', based on their distinct social characteristics and limited probabilities of status change between breeding seasons. In order to investigate whether this social organization has caused local genetic differentiation, leapfrogs and residents were compared at eight polymorphic microsatellite loci. No significant genetic subdivision between residents and leapfrogs was observed (theta = 0.0000; 95% confidence interval (CI), -0.0027-0.0033), indicating that the oystercatcher population on the island of Schiermonnikoog has to be considered as one panmictic unit. Investigation of three additional locations in the northern part of The Netherlands did not reveal significant genetic population subdivision either (theta = -0.0005; 95% CI, -0.0045-0.0037), despite the fact that adult osytercatchers show extreme fidelity to their breeding localities. These results indicate panmixis and considerable levels of gene flow within the northern part of The Netherlands. Thus, the results from genetical analyses do not seem to be in agreement with observational data on the dispersal behaviour of breeding individuals. It is argued that the lack of population structure, locally on Schiermonnikoog as well as across larger geographical distances, is to be attributed to high levels of gene flow through dispersal of juvenile birds.  相似文献   

7.
Wang HW  Ge S 《Molecular ecology》2006,15(13):4109-4122
Cathaya argyrophylla is an endangered conifer restricted to subtropical mountains of China. To study phylogeographical pattern and demographic history of C. argyrophylla, species-wide genetic variation was investigated using sequences of maternally inherited mtDNA and biparentally inherited nuclear DNA. Of 15 populations sampled from all four distinct regions, only three mitotypes were detected at two loci, without single region having a mixed composition (G(ST) = 1). Average nucleotide diversity (theta(ws) = 0.0024; pi(s) = 0.0029) across eight nuclear loci is significantly lower than those found for other conifers (theta(ws) = 0.003 approximately 0.015; pi(s) = 0.002 approximately 0.012) based on estimates of multiple loci. Because of its highest diversity among the eight nuclear loci and evolving neutrally, one locus (2009) was further used for phylogeographical studies and eight haplotypes resulting from 12 polymorphic sites were obtained from 98 individuals. All the four distinct regions had at least four haplotypes, with the Dalou region (DL) having the highest diversity and the Bamian region (BM) the lowest, paralleling the result of the eight nuclear loci. An AMOVA revealed significant proportion of diversity attributable to differences among regions (13.4%) and among populations within regions (8.9%). F(ST) analysis also indicated significantly high differentiation among populations (F(ST) = 0.22) and between regions (F(ST) = 0.12-0.38). Non-overlapping distribution of mitotypes and high genetic differentiation among the distinct geographical groups suggest the existence of at least four separate glacial refugia. Based on network and mismatch distribution analyses, we do not find evidence of long distance dispersal and population expansion in C. argyrophylla. Ex situ conservation and artificial crossing are recommended for the management of this endangered species.  相似文献   

8.
Comparative analyses of nuclear and organelle genetic markers may help delineate evolutionarily significant units or management units, although population differentiation estimates from multiple genomes can also conflict. Striped bass (Morone saxatilis) are long-lived, highly migratory anadromous fish recently recovered from a severe decline in population size. Previous studies with protein, nuclear DNA and mitochondrial DNA (mtDNA) markers produced discordant results, and it remains uncertain if the multiple tributaries within Chesapeake Bay constitute distinct management units. Here, 196 young-of-the-year (YOY) striped bass were sampled from Maryland's Choptank, Potomac and Nanticoke Rivers and the north end of Chesapeake Bay in 1999 and from Virginia's Mataponi and Rappahannock Rivers in 2001. A total of 10 microsatellite loci exhibited between two and 27 alleles per locus with observed heterozygosities between 0.255 and 0.893. The 10-locus estimate of R(ST) among the six tributaries was -0.0065 (95% confidence interval -0.0198 to 0.0018). All R(ST) and all but one theta estimates for pairs of populations were not significantly different from zero. Reanalysis of Chesapeake Bay striped bass mtDNA data from two previous studies estimated population differentiation between theta=-0.002 and 0.160, values generally similar to mtDNA population differentiation predicted from microsatellite R(ST) after adjusting for reduced effective population size and uniparental inheritance in organelle genomes. Based on mtDNA differentiation, breeding sex ratios or gene flow may have been slightly male biased in some years. The results reconcile conflicting past studies based on different types of genetic markers, supporting a single Chesapeake Bay management unit encompassing a panmictic striped bass breeding population.  相似文献   

9.
Population genetic structure of the fungal wheat pathogen Tapesia yallundae in Washington State was determined using genetically characterized amplified fragment length polymorphic (AFLP) markers and mating-type (MAT1-1 or MAT1-2). Segregation and linkage relationships among 164 AFLP markers and MAT were analysed using 59 progeny derived from an in vitro cross. Alleles at 158 AFLP loci and the mating-type locus segregated in a 1:1 ratio. Ten unlinked markers were chosen to determine genetic and genotypic diversity and to test the hypothesis of random mating and population differentiation among five subpopulations of T. yallundae representative of the geographical distribution of wheat production in eastern Washington. Among 228 isolates collected, overall gene diversity was high (h = 0.425) and a total of 91 unique multilocus genotypes (MLG) were identified, with 32 MLG occurring at least twice. The overall population genetic structure was consistent with random mating based on the segregation of mating-type, index of association (IA), parsimony tree length permutation test (PTLPT) and genotypic diversity analyses. However, clonal genotypes were found within each subpopulation and were also distributed among the five subpopulations. No significant differences in allele frequencies were found among the five subpopulations for all 10 loci based on contingency table analysis (G2) and Wier & Cockerham's population differentiation statistic theta (theta = -0.008, P = 0.722). T. yallundae appears to consist of a large homogeneous population throughout eastern Washington with both sexual and asexual reproduction contributing to the observed population genetic structure despite no report of sexual fruiting bodies of T. yallundae occurring under natural field conditions.  相似文献   

10.
Interspecific differentiation values (G(ST)) between two closely related oak species (Quercus petraea and Q. robur) were compiled across different studies with the aim to explore the distribution of differentiation at the genome level. The study was based on a total set of 389 markers (isozymes, AFLPs, SCARs, microsatellites, and SNPs) for which allelic frequencies were estimated in pairs of populations sampled throughout the sympatric distribution of the two species. The overall distribution of G(ST) values followed an L-shaped curve with most markers exhibiting low species differentiation (G(ST) < 0.01) and only a few loci reaching >10% levels. Twelve percent of the loci exhibited significant G(ST) deviations to neutral expectations, suggesting that selection contributed to species divergence. Coding regions expressed higher differentiation than noncoding regions. Among the 389 markers, 158 could be mapped on the 12 linkage groups of the existing Q. robur genetic map. Outlier loci with large G(ST) values were distributed over 9 linkage groups. One cluster of three outlier loci was found within 0.51 cM; but significant autocorrelation of G(ST) was observed at distances <2 cM. The size and distribution of genomic regions involved in species divergence are discussed in reference to hitchhiking effects and disruptive selection.  相似文献   

11.
The existence and mode of selection operating on heritable adaptive traits can be inferred by comparing population differentiation in neutral genetic variation between populations (often using F(ST) values) with the corresponding estimates for adaptive traits. Such comparisons indicate if selection acts in a diversifying way between populations, in which case differentiation in selected traits is expected to exceed differentiation in neutral markers [F(ST )(selected) > F(ST )(neutral)], or if negative frequency-dependent selection maintains genetic polymorphisms and pulls populations towards a common stable equilibrium [F(ST) (selected) < F(ST) (neutral)]. Here, we compared F(ST) values for putatively neutral data (obtained using amplified fragment length polymorphism) with estimates of differentiation in morph frequencies in the colour-polymorphic damselfly Ischnura elegans. We found that in the first year (2000), population differentiation in morph frequencies was significantly greater than differentiation in neutral loci, while in 2002 (only 2 years and 2 generations later), population differentiation in morph frequencies had decreased to a level significantly lower than differentiation in neutral loci. Genetic drift as an explanation for population differentiation in morph frequencies could thus be rejected in both years. These results indicate that the type and/or strength of selection on morph frequencies in this system can change substantially between years. We suggest that an approach to a common equilibrium morph frequency across all populations, driven by negative frequency-dependent selection, is the cause of these temporal changes. We conclude that inferences about selection obtained by comparing F(ST) values from neutral and adaptive genetic variation are most useful when spatial and temporal data are available from several populations and time points and when such information is combined with other ecological sources of data.  相似文献   

12.
Significant correlation of genetic distances (estimated for 17 polymorphic loci) between populations of Asia and Alaska Eskimos, coast and reindeer chuckchies, Kamchatka koryaks and Chuckotka even with geographic distances (r = 0.650; P less than 0.01) is shown. Also, significant correlation of genetic and geographic distances between 5 coast chuckchies subpopulations have been revealed (r = 0.871; P less than 0.001). The findings can indicate some ecological conditionality of population and subpopulation genetic structure's features.  相似文献   

13.
Lupinus microcarpus is a self-compatible annual plant that forms a species complex of morphologically variable but indeterminate varieties. In order to examine the hypothesis that varieties of L. microcarpus comprise genetically differentiated and reproductively isolated species, populations of L. microcarpus var. horizontalis and var. densiflorus were sampled from an area of sympatry in central California and genotyped using six microsatellite loci. Bayesian clustering divided the total sample into two groups corresponding to the named varieties with extremely low levels of inferred coancestry. Similarly, maximum likelihood and distance methods for genetic assignment placed individuals in two nonoverlapping groups. Evidence for isolation by distance (IBD) within each variety was found at shorter distance classes, but varieties remained differentiated in sympatry. Furthermore, coalescent estimates of divergence time indicate separation within the past 950-5050 generations, with minimal gene flow after divergence. A four-level hierarchical analysis of molecular variance (amova) found significant levels of genetic differentiation among varieties (theta(P) = 0.292), populations within varieties (theta(S) = 0.449), subpopulations within populations (theta(SS) = 0.623), and individuals within subpopulations (f = 0.421); but the greatest degree of differentiation was at the subpopulation level. Although it is sometimes assumed that the magnitude of genetic differences (e.g. F(ST)) should be greater between species than among populations or subpopulations of the same species, shared ancestral polymorphism may lead to relatively low levels of differentiation at the species level, even as the stochastic effects of genetic drift generate higher levels of differentiation at lower hierarchical levels. These results suggest that L. microcarpus var. horizontalis and var. densiflorus are recently diverged yet reproductively isolated species, with high levels of inbreeding resulting from the combined effects of limited gene flow, demographic bottlenecks, and partial selfing in finite, geographically structured populations.  相似文献   

14.
Leng L  Zhang DE 《Molecular ecology》2011,20(12):2494-2509
The genetic differentiation of populations is a key parameter in population genetic investigations. Wright's F(ST) (and its relatives such as G(ST) ) has been a standard measure of differentiation. However, the deficiencies of these indexes have been increasingly realized in recent years, leading to some new measures being proposed, such as Jost's D (Molecular Ecology, 2008; 17, 4015). The existence of these new metrics has stimulated considerable debate and induced some confusion on which statistics should be used for estimating population differentiation. Here, we report a simulation study with neutral microsatellite DNA loci under a finite island model to compare the performance of G(ST) and D, particularly under nonequilibrium conditions. Our results suggest that there exist fundamental differences between the two statistics, and neither G(ST) nor D operates satisfactorily in all situations for quantifying differentiation. D is very sensitive to mutation models but G(ST) noticeably less so, which limits D's utility in population parameter estimation and comparisons across genetic markers. Also, the initial heterozygosity of the starting populations has some important effects on both the individual behaviours of G(ST) and D and their relative behaviours in early differentiation, and this effect is much greater for D than G(ST) . In the early stages of differentiation, when initial heterozygosity is relatively low (<0.5, if the number of subpopulations is large), G(ST) increases faster than D; the opposite is true when initial heterozygosity is high. Therefore, the state of the ancestral population appears to have some lasting impacts on population differentiation. In general, G(ST) can measure differentiation fairly well when heterozygosity is low whatever the causes; however, when heterozygosity is high (e.g. as a result of either high mutation rate or high initial heterozygosity) and gene flow is moderate to strong, G(ST) fails to measure differentiation. Interestingly, when population size is not very small (e.g. N ≥ 1000), G(ST) measures differentiation quite linearly with time over a long duration when gene flow is absent or very weak even if mutation rate is not low (e.g. μ = 0.001). In contrast, D, as a differentiation measure, performs rather robustly in all these situations. In practice, both indexes should be calculated and the relative levels of heterozygosities (especially H(S) ) and gene flow taken into account. We suggest that a comparison of the two indexes can generate useful insights into the evolutionary processes that influence population differentiation.  相似文献   

15.
The army ant Eciton burchellii is probably the most important arthropod predator in the Neotropics, and many animal species depend upon it. Sex-biased dispersal with winged males and permanently wingless queens may render this species especially sensitive to habitat fragmentation and natural barriers, which might have severe impacts on population structure and lead to population decline. Using nuclear microsatellite markers and mitochondrial sequences, we investigated genetic differentiation in a fragmented population in the Panama Canal area. While nuclear markers showed little differentiation between subpopulations (F(ST) = 0.017), mitochondrial differentiation was maximal in some cases (Phi(ST) = 1). This suggests that, while females are not capable of crossing barriers such as large rivers, flying males are able to promote nuclear gene flow between the studied forest patches. Consistent with this interpretation, we did not find any evidence for inbreeding or genetic deterioration on Barro Colorado Island over the last 90 years since its formation.  相似文献   

16.
We report the population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at 10 microsatellite loci. Additionally, we compare heterozygosity and inbreeding estimates for continuous and fragmented populations and discuss the consequences for conservation. For a total of 314 individuals over 10 populations, the number of alleles per locus ranged from 20 to 27 and expected and observed heterozygosity varied from 0.129 to 0.924 and 0.067 to 1.000, respectively. Significant values of theta and R(ST) showed important genetic differentiation among populations. theta was much lower than R(ST), suggesting that identity by state and identity by descent have diverged in these populations. Although a significant amount of inbreeding was found under the identity by descent model (f = 0.11), an estimate of inbreeding for microsatellite markers based on a more adequate stepwise mutation model showed no evidence of nonrandom mating (R(IS) = 0.04). Differentiation (pairwise F(ST)) was positively correlated with geographical distance, as expected under the isolation by distance model. No effect of fragmentation on heterozygosity or inbreeding could be detected. This is most likely due to the fact that Cerrado fragmentation is a relatively recent event (approximately 60 years) compared to the species life cycle. Also, the populations surveyed from both fragmented and disturbed areas were composed mainly of adult individuals, already present prior to ecosystem fragmentation. Adequate hypothesis testing of the effect of habitat fragmentation will require the recurrent analysis of juveniles across generations in both fragmented and nonfragmented areas.  相似文献   

17.
We monitored populations of two wood ant species, Formica aquilonia and Formica lugubris, through annual mapping of the colonies in a fragmenting forest landscape from 1966 to 1998. The genetic population structure was studied at the end of the study period by using 12 microsatellite loci. Fragmentation of forest led to a decline and spatial redistribution of populations. Changes in the spatial distribution were particularly pronounced in the highly polygynous (many queens in a single nest) species F. aquilonia, whose local populations declined or became extinct, or relocated themselves and colonized new patches. The genetic relationships of the remaining subpopulations indicated the historical developments, revealing the boundaries of the historical populations (high values of genetic differentiation, F(ST)), recolonization histories (genetic affinities revealed by Bayesian analyses) and population decline (reduced variation). Big genetic differences could be detected over short distances, so differentiation also depended on social factors. Our results showed that a genetic study can be reliably used to dissect the recent historical changes underlying the present population structure, and that species with different social structures can respond differently to habitat changes. Combining our demographic and genetic results suggests that habitat fragmentation forms a clear threat on a local scale with large negative effects on ant population viability.  相似文献   

18.
The effect of time on genetic differentiation was studied among infrapopulations of mature specimens of the hemiurid fluke, Lecithochirium fusiforme, a parasite of marine fishes. Genetic distances and genetic structure within and among different temporal samples of a geographical population were investigated using starch gel electrophoresis, by screening 6 polymorphic loci in 2 groups of infrapopulations corresponding to different sampling data, i.e., winter 1997-1998 and autumn 1998. The genetic distance among infrapopulations was low (D = 0.000-0.058 +/- 0.041). However, genetic divergence among infrapopulations from the same geographic location was clearly lower within each temporal sample (G(ST) = 0.021 and 0.034) than the corresponding value obtained for 12 infrapopulations sampled at different seasons of the year (G(ST) = 0.067). These results suggest the existence of a relatively important temporal effect that accounts for the differences in genetic variability among adult infrapopulations of L. fusiforme. Therefore, a hypothetical temporal gene flow favored by the existence of persistent life-cycle stages of this species in paratenic hosts is not sufficient to mask the temporal differentiation caused by genetic drift.  相似文献   

19.
Genetic diversity and population genetic structure of natural Oryza rufipogon populations in China were studied based on ten microsatellite loci. For a total of 237 individuals of 12 populations collected from four regions, a moderate to high level of genetic diversity was observed at population levels with the number of alleles per locus ( A) ranging from 2 to 18 (average 10.6), and polymorphic loci ( P) from 40.0% to 100% (average 83.3%). The observed heterozygosity ( H(O)) varied from 0.163 to 0.550 with the mean of 0.332, and the expected heterozygosity ( H(E)) from 0.164 to 0.648 with the mean of 0.413. The level of genetic diversity for Guangxi was the highest. These results are in good agreement with previous allozyme and RAPD studies. However, it was unexpected that high genetic differentiation among populations was found ( R(ST) = 0.5199, theta = 0.491), suggesting that about one-half of the genetic variation existed between the populations. Differentiation (pairwise theta) was positively correlated with geographical distance ( r = 0.464), as expected under the isolation by distance model. The habitat destruction and degradation throughout the geographic range of O. rufipogon may be the main factor attributed to high genetic differentiation among populations of O. rufipogon in China.  相似文献   

20.
Comparisons of genetic differentiation across populations based on different loci can provide insight into the evolutionary patterns acting on various regions of genomes. Here, we develop a program to statistically compare population genetic differentiation statistics (F(ST) or G'(ST) ) calculated from different loci. The program employs a routine that resamples either or both of individuals and loci and calculates a bootstrap confidence interval in the statistics. Resampling individuals is important when fewer than 25 individuals are sampled per population and when confidence intervals are required for individual loci. Resampling loci provides confidence intervals for sets of loci, such as a set presumed to be neutral, but can be anticonservative if fewer than 20 loci are analysed. We demonstrate the program using previously published data on the genetic differentiation at a major histocompatibility complex locus and at microsatellite loci across 10 populations of the guppy (Poecilia reticulata).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号