共查询到20条相似文献,搜索用时 0 毫秒
1.
Light stimulation of rod cells in vertebrate eyes may cause Ca2+ release from the intracellular disks. Radiolabelled tracers show that light causes a small hyperpolarization of intact disk stacks and redistribution of the ions Ca2+ and Cl-. 相似文献
2.
Experiments are described demonstrating that Na(+)-Ca2+ exchange of retinal rod disc membrane is highly sensitive to light. The Na(+)-Ca2+ exchanger was shown to possess two types of binding sites with different affinities for calcium. The low affinity binding sites (KCaD = 5.8 mumol/l) are light-insensitive. After bleaching, KD of the high affinity Ca2(+)-binding sites an Ki for Na+ changed from 0.2 to 0.3 mumol/l and from 3.2 to 0.7 nmol/l, respectively. Light inhibits the steady-state Ca2+ uptake by a factor of 1.5. Photocontrol of the Na(+)-Ca2+ exchanger affinity is observed at the physiological level of rhodopsin bleaching. 相似文献
3.
R G Johnson D Pfister S E Carty A Scarpa 《The Journal of biological chemistry》1979,254(21):10963-10972
The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in chromaffin ghosts. The chromaffin ghosts were formed by hypo-osmotic lysis of isolated bovine chromaffin granules and extensive dialysis in order to remove intragranular binding components and dissipate the endogenous electrochemical gradients. Upon ATP addition to suspensions of chromaffin ghosts, a transmembrane proton gradient alone, a transmembrane gradient alone, or both, could be established, depending upon the compositions of the media in which the ghosts were formed and resuspended. When chloride was present in the medium, addition of ATP resulted in the generation of a transmembrane proton gradient, acidic inside of 1 pH unit (measured by [14C]methylamine distribution), and no transmembrane potential (measured by [14C]-thiocyanate distribution). When ATP was added to chromaffin ghosts suspended in a medium in which chloride was substituted by isethionate, a transmembrane potential, inside positive, of 45 mV and no transmembrane proton gradient, was measured. In each medium, the addition of agents known to affect proton or potential gradients, respectively, exerted a predictable mechanism of action. Accumulation of [14C]epinephrine or [14C]5-hydroxytryptamine was over 1 order of magnitude greater in the presence of the transmembrane proton gradient or the transmembrane potential than in the absence of any gradient and, moreover, was related to the magnitude of the proton or potential gradient in a dose-dependent manner. When ghosts were added to a medium containing chloride and isethionate, both a delta pH and delta psi could be generated upon addition of ATP. In this preparation, the maximal rate of amine accumulation was observed. The results indicate that amine accumulation into chromaffin ghosts can occur in the presence of either a transmembrane proton gradient, or a transmembrane potential gradient, and that the maximal rate of accumulation may exist when both components of the protonmotive force are present. 相似文献
4.
V I Kocherga N V Nesterenko Z D Vorobets L K Kurchenko M D Kurski? 《Ukrainski? biokhimicheski? zhurnal》1987,59(1):61-66
The effect of membrane potential on the passive 45Ca2+ uptake by cardial sarcolemmal vesicles was investigated. Membrane potentials were generated by the K+ gradient in the presence of valinomycin and were measured using fluorescent dye diS-C3-(5). It was shown that the 45Ca2+ influx into vesicles increased twice after membrane depolarization. Evaluation of the 45Ca2+ influx over a wide range of membrane potentials produced a profile similar to that of current-voltage relationships for single calcium channels in isolated cardiomyocytes. Passive 45Ca2+ transport was inhibited by 1 mM Cd2+ and Co2+. It is suggested that the voltage-dependent Ca2+ influx into vesicles occurs through Ca2+-channels. 相似文献
5.
Summary The ATP-dependent Ca2+ transport activity (T. Takuma, B.L. Kuyatt and B.J. Baum,Biochem. J.
227:239–245, 1985) exhibited by inverted basolateral membrane vesicles isolated from rat parotid gland was further characterized. The activity was dependent on Mg2+. Phosphate (5mm), but not oxalate (5mm), increased maximum Ca2+ accumulation by 50%. Half-maximal Ca2+ transport was achieved at 70nm Ca2+ in EGTA-buffered medium while maximal activity required >1 m Ca2+ (V
max=54 nmol/mg protein/min). Optimal rates of Ca2+ transport were obtained in the presence of KCl, while in a KCl-free medium (mannitol or sucrose) 40% of the total activity was achieved, which could not be stimulated by FCCP. The initial rate of Ca2+ transport could be significantly altered by preimposed membrane potentials generated by K+ gradients in the presence of valinomycin. Compared to the transport rate in the absence of membrane potential, a negative (interior) potential stimulated uptake by 30%, while a positive (interior) potential inhibited uptake. Initial rates of Ca2+ uptake could also be altered by imposing pH gradients, in the absence of KCl. When compared to the initial rate of Ca2+ transport in the absence of a pH gradient, pH
i
=7.5/pH
o
=7.5; the activity was 60% higher in the presence of an outwardly directed pH gradient, pH
i
=7.5/pH
o
=8.5; while it was 80% lower when an inwardly directed pH gradient was imposed, pH
i
=7.5/pH
o
=6.2. The data show that the ATP-dependent Ca2+ transport in BLMV can be modulated by the membrane potential, suggesting therefore that there is a transfer of charge into the vesicle during Ca2+ uptake, which could be compensated by other ion movements. 相似文献
6.
The membrane potential and calcium accumulation of mitochondria were followed by ion-specific electrodes in the presence of the proton-donor anions phosphate, acetate, glutamate, and beta-hydroxybutyrate. Phosphate was the only anion which allowed rapid and complete restoration of both the membrane potential and the steady-state extramitochondrial calcium concentration after the uptake of 100–200 nmol calcium per mg protein. If there was no influx of any proton-donor anion, the extent of calcium uptake depended on the intramitochondrial phosphate content. Both the fall of the membrane potential and the increase of the external calcium concentration brought about by a given amount of uncoupler were counteracted by phosphate transported into the mitochondria. 相似文献
7.
G. P. Miljanich P. P. Nemes D. L. White E. A. Dratz 《The Journal of membrane biology》1981,60(3):249-255
Summary The transmembrane distribution of the major aminophospholipids in the bovine retinal rod outer segment disk membrane, phosphatidylethanolamine and phosphatidylserine, was determined using a novel pair of permeable and impermeable covalent modification reagents. The values for the percentages of phosphatidylethanolamine and phosphatidylserine in the outer monolayer were calculated from a simple expression which takes into account the leakage of impermeable reagent into the disk lumen as monitored by the extent of labeling of lysine entrapped in the lumen. We infer from our results that at least 73 to 87% of the disk phosphatidylethanolamine and 77 to 88% of the disk phosphatidylserine are in the outer disk membrane monolayer. The fatty acid composition of the inner aminophospholipids is slightly more saturated than the outer aminophospholipids. Calculations using the lateral surface areas occupied by the disk membrane lipids suggest that 65 to 100% of the disk phosphatidylcholine is on the inner membrane surface. Since the disk phosphatidylcholine is also somewhat more saturated than the phosphatidylethanolamine and phosphatidylserine of the outer monolayer, the total inner membrane monolayer fatty acid composition is more saturated than that of the outer monolayer fatty acid composition. 相似文献
8.
Luecke H Schobert B Cartailler JP Richter HT Rosengarth A Needleman R Lanyi JK 《Journal of molecular biology》2000,300(5):1237-1255
In order to understand how isomerization of the retinal drives unidirectional transmembrane ion transport in bacteriorhodopsin, we determined the atomic structures of the BR state and M photointermediate of the E204Q mutant, to 1.7 and 1.8 A resolution, respectively. Comparison of this M, in which proton release to the extracellular surface is blocked, with the previously determined M in the D96N mutant indicates that the changes in the extracellular region are initiated by changes in the electrostatic interactions of the retinal Schiff base with Asp85 and Asp212, but those on the cytoplasmic side originate from steric conflict of the 13-methyl retinal group with Trp182 and distortion of the pi-bulge of helix G. The structural changes suggest that protonation of Asp85 initiates a cascade of atomic displacements in the extracellular region that cause release of a proton to the surface. The progressive relaxation of the strained 13-cis retinal chain with deprotonated Schiff base, in turn, initiates atomic displacements in the cytoplasmic region that cause the intercalation of a hydrogen-bonded water molecule between Thr46 and Asp96. This accounts for the lowering of the pK(a) of Asp96, which then reprotonates the Schiff base via a newly formed chain of water molecules that is extending toward the Schiff base. 相似文献
9.
A dependence of the inward current across the cell membrane giant neurones at garden snail was investigated under voltage champ. It has been concluded that there are two components of the inward current: a calcium-dependent and I0. The latter current probably was carried by sodium ions. The inward Ca current (ICa) is then given as a function [Ca]2+ by: formula (see text) : KCa is a dissociation constant of the sites in outer part channel independent of membrane voltage. The experimental data are interpreted by two barrier membrane model bases of absolute reaction rate Eyring's theory. 相似文献
10.
Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors 总被引:4,自引:0,他引:4
D S Papermaster B G Schneider D DeFoe J C Besharse 《The journal of histochemistry and cytochemistry》1986,34(1):5-16
Retinal rod photoreceptor cells absorb light at one end and establish synaptic contacts on the other. Light sensitivity is conferred by a set of membrane and cytosol proteins that are gathered at one end of the cell to form a specialized organelle, the rod outer segment (ROS). The ROS is composed of rhodopsin-laden, flattened disk-shaped membranes enveloped by the cell's plasma membrane. Rhodopsin is synthesized on elements of the rough endoplasmic reticulum and Golgi apparatus near the nucleus in the inner segment. From this synthetic site, the membrane-bound apoprotein, opsin, is released from the Golgi in the membranes of small vesicles. These vesicles are transported through the cytoplasm of the inner segment until they reach its apical plasma membrane. At that site, opsin-laden vesicles appear to fuse near the base of the connecting cilium that joins the inner and outer segments. This fusion inserts opsin into the plasma membrane of the photoreceptor. Opsin becomes incorporated into the disk membrane by a process of membrane expansion and fusion to form the flattened disks of the outer segment. Within the disks, opsin is highly mobile, and rapidly rotates and traverses the disk surface. Despite its mobility in the outer segment, quantitative electron microscopic, immunocytochemical, and autoradiographic studies of opsin distribution demonstrate that little opsin is detectable in the inner segment plasma membrane, although its bilayer is in continuity with the plasma membrane of the outer segment. The photoreceptor successfully establishes the polarized distribution of its membrane proteins by restricting the redistribution of opsin after vectorially transporting it to one end of the cell on post-Golgi vesicles. 相似文献
11.
ATP-dependent calcium uptake activity associated with a disk membrane fraction isolated from bovine retinal rod outer segments 总被引:3,自引:0,他引:3
Ca2+ sequestration and release from disks of rod outer segments may play a critical role in visual transduction. An ATP-dependent Ca2+ uptake activity has been identified in association with purified disks of bovine rod outer segments. A crude preparation of osmotically active disks was obtained from rod outer segments by hypoosmotic shock and subsequent flotation on a 5% Ficoll 400 solution. These "crude" disks were further purified by separation into two distinct components by centrifugation in a linear Ficoll gradient. Disks comprised the major component; at least 60% of the protein was rhodopsin. This fraction also contained a Ca2+ uptake activity stimulated approximately 4-fold by ATP. The initial rate was approximately 0.21 nmol of Ca2+ (mg of protein)-1 min-1. Most of the ATP-dependent accumulation of 45Ca2+ was released by the calcium ionophore A23187. The uptake activity was sensitive to vanadate (Ki approximately 20 microM) and insensitive to the mitochondrial Ca2+ uptake inhibitor ruthenium red (10 microM). The ATP-dependent Ca2+ uptake exhibited Michaelis-Menten activation kinetics with respect to [Ca2+] (Km approximately 6 microM). The osmotic properties of the sealed disk membranes were exploited to determine whether the association of Ca2+ transport activity with the disks was merely coincidental. The sedimentation properties of these disks, upon centrifugation on a second Ficoll linear density gradient, varied with the osmolarity of the gradient solution. In several separate gradient solutions of differing osmotic and ionic strengths, the Ca2+ uptake activity always comigrated with the disks. These results indicate that the ATP-dependent Ca2+ uptake activity was physically associated with sealed native disk membranes. The characteristics of the Ca2+ uptake activity suggest that it may play a major role in the regulation of cytosolic Ca2+ levels in rod cells in vivo. 相似文献
12.
Coupling between transport processes in intestine 总被引:2,自引:0,他引:2
P F Curran 《The Physiologist》1968,11(1):3-23
13.
A refined electrochemical model accounting for intracellular calcium oscillations and their interrelations with oscillations of the potential difference across the membrane of the endoplasmic reticulum (ER) or other intracellular calcium stores is established. The ATP dependent uptake of Ca2+ from the cytosol into the ER, the Ca2+ release from the ER through channels following a calcium-induced calcium release mechanism, and a potential-dependent Ca2+ leak flux out of the ER are included in the model and described by plausible rate laws. The binding of calcium to specific proteins such as calmodulin is taken into account. The quasi-electroneutrality condition allows us to express the transmembrane potential in terms of the concentrations of cytosolic calcium and free binding sites on proteins, which are the two independent variables of the model. We include monovalent ions in the model, because they make up a considerable portion in the balance of electroneutrality. As the permeability of the endoplasmic membrane for these ions is much higher than that for calcium ions, we assume the former to be in Nernst equilibrium. A stability analysis of the steady-state solutions (which are unique or multiple depending on parameter values) is carried out and the Hopf bifurcation leading from stable steady states to self-sustained oscillations is analysed with the help of appropriate mathematical techniques. The oscillations obtained by numerical integration exhibit the typical spike-like shape found in experiments and reasonable values of frequency and amplitude. The model describes the process of switching between stationary and pulsatile regimes as well as changes in oscillation frequency upon parameter changes. It turns out that calcium oscillations can arise without a permanent influx of calcium into the cell, when a calcium-buffering system such as calmodulin is included. 相似文献
14.
Cadmium inhibits plasma membrane calcium transport 总被引:6,自引:0,他引:6
P. M. Verbost G. Flik R. A. C. Lock S. E. Wendelaar Bonga 《The Journal of membrane biology》1988,102(2):97-104
Summary The interaction of Cd2+ with the plasma membrane Ca2+-transporting ATPase of fish gills was studied. ATP-driven Ca2+-transport in basolateral membrane (BLM) vesicles was inhibited by Cd2+ with anI
50 value of 3.0nm at 0.25 m free Ca2+ using EGTA, HEEDTA and NTA to buffer Ca2+ and Cd2+ concentrations. The inhibition was competitive in nature since theK
0.5 value for Ca2+ increased linearly with increasing Cd2+ concentrations while theV
max remained unchanged. The Ca2+ pump appeared to be calmodulin dependent, but we conclude that the inhibition by Cd2+ occurs directly on the Ca2+ binding site of the Ca2+-transporting ATPase and not via the Ca2+-binding sites of calmodulin. It is suggested that Cd2+-induced inhibition of Ca2+-transporting enzymes is the primary effect in the Cd2+ toxicity towards cells followed by several secondary effects due to a disturbed cellular Ca2+ metabolism. Our data illustrate that apparent stimulatory effects of low concentrations of Cd2+ on Ca2+-dependent enzymes may derive from increased free-Ca2+ levels when Cd2+ supersedes Ca2+ on the ligands. 相似文献
15.
A mathematical model, which describes kinetics of transmembrane calcium transport in a smooth muscular cell, has been elaborated and investigated taking into account that the change of calcium cations concentration within a cell is determined by two mutually opposite processes: an increase of a carrying capacity of calcium channels of plasma membrane under signal substance action and calcium removal from the intracellular space by Mg2+, ATP-dependent calcium pump localized on the plasma membrane. The fundamental difference of the proposed model against the models analyzed in literature before is that the cellular system returns to the initial stationary state after enzyme-catalysed transformation of the signal substance. The results of calculations showed that this model really described the experimental kinetics of the transmembrane calcium transport. In this paper the influence of different parameters (Michaelis constant and ultimate rate of calcium pump, initial concentrations of signal substance and enzyme decomposing it, rate constants) on kinetics of calcium transport through the plasma membrane has been investigated in detail. 相似文献
16.
Two ricin-specific glycoproteins have been identified on neuraminidase-treated rod outer segment plasma membranes of bovine retinal photoreceptor cells. Ricin-gold-dextran particles were observed by electron microscopy to densely label the surface of neuraminidase-treated rod outer segments. Western blotting of proteins separated by SDS-gel electrophoresis indicated that two ricin-binding glycoproteins of Mr 230,000 and 110,000 are specific for the plasma membrane and are not found in disk membranes. These glycoproteins can serve as specific probes for the purification of the rod outer segment plasma membrane. 相似文献
17.
Increasing the concentration of calcium in the external buffer flowing past isolated, intact bovine retinal rod outer segment disks immobilized in a flow system reduced the rate of radioactive calcium efflux from within the disks in the dark. We interpret these results as extradiskal calcium acting at an inhibitory binding site to block the calcium efflux. A Scatchard analysis of the external calcium dependence of the efflux yields an apparent dissociation constant of 50 microM, which further suggests that the inhibition is mediated by a specific membrane binding site. The observed inhibition of calcium efflux may represent a functional role for the high-affinity calcium binding site which has been identified by others in previous physical studies of the disk membrane. This external calcium inhibited permeability may explain some of the discrepancies in the reported calcium transport properties of disks. Variations in the external calcium concentration may alter the calcium content of isolated disks, thereby indirectly affecting other transport functions including the measured light-induced release of calcium. No evidence was found for either Na/Ca or Ca/Ca exchange processes across the disk membrane. Lanthanum was even more effective than calcium in inhibiting calcium efflux in the dark. Neither lanthanum nor calcium inhibited the light-induced efflux of calcium from disks, which implies either that light and extradiskal calcium regulate separate permeability processes in the disk membrane or that light greatly reduces the affinity of the inhibitory site for calcium and lanthanum. 相似文献
18.
George P. Miljanich Larry A. Sklar Drina L. White Edward A. Dratz 《生物化学与生物物理学报:生物膜》1979,552(2):294-306
Thin-layer chromatography was used to separate the major phospholipid headgroup classes of the rod outer segment disk membrane into subfractions which differ markedly in fatty acid composition. At least 18% of the rod outer segment phosphatidylcholine must contain two saturated fatty acids. Furthermore, two unsaturated fatty acids are found in at least 43% of the phosphatidylserine, 24% of the phosphatidylcholine, and 24% of the phosphatidylethanolamine. The unsaturated acids are predominantly polyunsaturated in all cases. A similar separation, but with less resolution, was achieved with silicic acid column chromatography.The temperature dependence of the polarization of the fluorescence of trans-parinaric acid (9,11,13,15-all-trans-octadecatetraenoic acid) showed that the thermal behavior of aqueous dispersions of the phosphatidylcholine subfractions was consistent with their fatty acid compositions. 相似文献
19.
The apparently cooperative binding of 8-(5-thioacetamidofluorescein)-cGMP (SAF-cGMP) to cGMP-binding sites of the rod outer segments is regulated by Ca2+ in the 0.1-1 microM activity range. High Ca2+ reduces, and low Ca2+ increases the affinity of SAF-cGMP binding. This regulation involves only intrinsic membrane components. It is proposed that an allosteric regulation of cGMP binding by Ca2+ can contribute to photoreceptor potential adaptation. 相似文献
20.
In a previous communication [Giménez-Gallego, G., Benavides, J., García, M.L., & Valdivieso, F. (1980) Biochemistry (preceding paper in this issue)] we have reported the occurrence of a NADH oxidase activity in the renal brush border membranes. The brush border membranes can utilize the energy from the oxidation of NADH to drive the transport of amino acids (aspartic and glutamic acids), organic acids, and the lipophilic cation tetraphenylphosphonium (TPP). The coupling between NADH oxidation seems to be due to the formation of a proton electrochemical gradient (delta-mu H+) as indicated by the effect of specific ionophores. This system may be implicated in the reabsorption process in the renal tubules and in the maintenance of the delta-mu H+ (positive and acidic in the luminal side) previously described in the renal tubules "in vivo". 相似文献