首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local diversity of arable weeds increases with landscape complexity   总被引:1,自引:0,他引:1  
Patterns of plant diversity are often related to local site conditions and to competitive interactions, but landscape context may also be important for local plant species richness. This is shown here by analysing the relationship between landscape complexity and local species richness of arable weeds in wheat fields. The fields were located in 18 landscapes characterised by a gradient in landscape complexity from structurally complex to structurally simple (39–94% arable land). We quantified local site conditions, field management intensity and landscape characteristics, and used principle component analyses to ordinate the environmental variables. The percentage of arable land was negatively correlated with perimeter–area ratio, habitat-type diversity and topographical heterogeneity, but landscape characteristics did not correlate with local site conditions and field management intensity. The number of plant species was mainly related to landscape characteristics and to a lesser extent to field management intensity (nitrogen fertilisation), whereas local soil characteristics did not contribute to the explanation of arable weed richness. In a geographic scale analysis using circular landscape sectors ranging from 1 km up to 5 km diameter, the predictive power of landscape complexity for local plant species richness was strongest at 2 km indicating a scale-dependent relationship between landscape context and plant species richness. Our results support the hypothesis that local plant species richness in arable fields is greatly influenced by processes operating at the landscape scale. Seed rain from ruderal source habitats and disturbed edges may be the most important underlying process.  相似文献   

2.
Laure Gallien 《Oikos》2017,126(5):615-623
Can competitive interactions be inferred from the analysis of community functional diversity patterns? Originally, at the scale of a community, competitive interactions were supposed to generate trait overdispersion patterns due to limiting similarity process. More recently, by highlighting the importance of competitive hierarchies, it has been shown that when only one resource limits species coexistence, competition can also lead to patterns of trait clustering. However, these two expectations (overdispersion and clustering) ignore potential multi‐species indirect competitive interactions, and especially intransitive competition. Indeed, little is yet known about intransitive competition and its influence on community's functional diversity. Here I propose a brief appraisal of empirical evidence for intransitive competition in nature, and an overview of the current understanding of this mechanism and its properties. I then demonstrate with a theoretical model that intransitive competitive interactions can actually generate random‐like functional diversity patterns. The variety of diversity patterns (overdispersion, clustering, randomness) that can emerge from diverse types of competitive interactions makes it difficult to identify the presence of competition in nature, potentially leading to an underestimation of its importance as a structuring force. New methodologies able to capture both simple and complex competition mechanisms are thus urgently needed.  相似文献   

3.
生态学中的尺度问题——尺度上推   总被引:7,自引:0,他引:7  
张娜 《生态学报》2007,27(10):4252-4266
尺度推绎是生态学理论和应用的核心。如何在一个异质景观中进行尺度推绎仍然是一个悬而未决的科学难题,是对当今生态学家在全球变化背景下研究环境问题的重大挑战。就目前的研究,一般可分为四大类尺度推绎途径:空间分析法(如分维分析法和小波分析法)、基于相似性的尺度上推方法、基于局域动态模型的尺度上推方法、随机(模型)法。基于相似性的尺度上推方法来源于生物学上的异量关联,可将其思想延伸至空间上,研究物种丰富度、自然河网、地形特征、生态学格局或过程变量和景观指数等。基于局域动态模型的尺度上推方法需要首先确定是否进行跨尺度推绎,以及是否考虑空间单元之间的水平相互作用和反馈,然后再应用具体的方法或途径,如简单聚合法、有效值外推法、直接外推法、期望值外推、显式积分法和空间相互作用模拟法等。随机(模型)法以其它尺度上推方法为基础,根据研究的是单个景观,还是多个景观,采用不同的途径。理解、定量和降低尺度推绎结果的不确定性已经变得越来越重要,但相关研究仍然极少。以上所有有关尺度推绎的方法、途径和结果分析共同构成了尺度推绎的概念框架。  相似文献   

4.
Local interactions, biotic and abiotic, can have a strong influence on the large-scale properties of ecosystems. However, ecological models often explore the influence of local biotic interactions where physical disturbance is included as a large-scale and imposed source of variability but is not allowed to interact with biotic processes at the local scale. In marine intertidal communities dominated by mussels, wave disturbances create gaps in the mussel bed that recover through a successional sequence. We present a lattice model of mussel disturbance dynamics that allows local interactions between wave disturbance and mussel recolonization, in which each cell of the lattice can be empty, occupied by a mussel bed element, or disturbed (which corresponds to a newly disturbed cell that has unstable edges). As in natural ecosystems, wave disturbance can also spread from disturbed to adjacent occupied cells, and recolonization can also spread from occupied to adjacent empty cells. We first validate the local rules from artificial gap experiments and from natural gap monitoring along the Oregon coast. We analyze the properties of the model system as a function of different oceanographic forcings of productivity and disturbance. We show that the mussel bed can go through phase transitions characterized by a large sensitivity of mussel cover and patterns to oceanographic forcings but also that criticality (scale invariance) is observed over wide ranges of parameters, which suggests self-organization. We also show that spatial patterns in the intertidal can provide a robust signature of local processes and can inform about oceanographic regimes. We do so by comparing the large-scale patterns of the simulation (scaling exponents) with field data, which suggest that some experimental sites are close to criticality. Our results suggest that regional patterns in disturbed populations can be explained by local biotic and abiotic processes submitted to oceanographic forcing.  相似文献   

5.
Herbivore grazing is increasingly used as a management tool to prevent the dominance of vegetation by tall grasses or trees. In this report, a model is described that is used to analyze plant-herbivore interactions and their scaling up to landscape scale. The model can be used to predict effects of herbivory on vegetation development. The model is an ecosystem model including modules for carbon and nitrogen cycling through plants, soil organic matter, and atmosphere. Plants compete for light and nitrogen. An herbivory module is included that implements selective foraging by a herbivore in a spatially heterogeneous area. Simulations were done to analyze the effects of herbivore density on vegetation dynamics, to analyze the impact of soil fertility on maximum herbivore density, and to analyze effects of herbivore density on landscapes. Two important points come forward from the model. Maximum herbivore abundance shows a hump-shaped curve along a soil fertility gradient. At higher soil fertility, light competition becomes more important. Herbivory interferes with plant competition, giving the tall, less palatable species a competitive advantage and thereby reducing the food quality and availability and hence the carrying capacity of the area. At a landscape scale, herbivory leads to increased heterogeneity. This increased heterogeneity may increase carrying capacity. The implications of these points for nature management are discussed. Received 13 May 1998; accepted 23 November 1998.  相似文献   

6.
Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.  相似文献   

7.
Both dispersal and local competitive ability may determine the outcome of competition among species that cannot coexist locally. I develop a spatially implicit model of two-species competition at a small spatial scale. The model predicts the relative fitness of two competitors based on local reproductive rates and regional dispersal rates in the context of the number, size, and extinction probability of habitat patches in the landscape. I test the predictions of this model experimentally using two genotypes of the bacteriophagous soil nematode Caenorhabditis elegans in patchy microcosms. One genotype has higher fecundity while the other is a better disperser. With such a fecundity-dispersal trade-off between competitors, the model predicts that relative fitness will be affected most by local population size when patches do not go extinct and by the number of patches when there is a high probability of patch extinction. The microcosm experiments support the model predictions. Both approaches suggest that competitive dominance in a patchily distributed transient assemblage will depend upon the architecture and predictability of the environment. These mechanisms, operating at a small scale with high spatial admixture, may be embedded in a larger metacommunity process.  相似文献   

8.
Inouye BD 《Oecologia》2005,145(2):188-196
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

9.
Recent models have shown that the development of spatial structure in plant mixtures may make strong competitive interactions between species hard to detect owing to spatial segregation of the competing species. Here we address the issue of measuring interspecific competition using a simulation based on a neighbourhood population model which assumes that both dispersal and competitive interactions are localized. Using known parameter combinations we use the model to test the power and efficiency of two approaches for detecting and measuring competition. The first approach is based on measuring the response of communities to the removal of neighbours. Measures of interspecific competition based on this approach are extremely biased by spatial segregation of species, although this bias may be partially overcome by altering the spatial scale at which the effects of removals are recorded. The second approach is based on multiple regression of per capita population growth rates on local densities of the interacting species. When dispersal is restricted, the regression approach provides accurate estimates of interspecific competition coefficients when the scale of the sampling unit (i.e. the quadrats within which plants are counted) is large compared to the scale at which interactions and dispersal occur. When seeds disperse globally the removal method performs best; the regression method fails because sampling units do not form closed dynamic systems. Our results highlight the importance of tailoring methods for detecting competition to the characteristics of the species in question. They also indicate that rapid nonmanipulative estimates of competition coefficients may be the best approach in communities where dispersal is restricted and competitive interactions localized, which is likely to be the case for the majority of plants.  相似文献   

10.
Chen B  Kang L 《Oecologia》2005,144(2):187-195
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

11.
The invasion of natural habitats by nonnative species is affected by both native biodiversity and environmental conditions; however few tests of facilitation between native community members and nonnative species have been conducted along disturbance and stress gradients. There is strong evidence for an increase in facilitation between native plant species with increasing levels of natural environmental stress, however it is unknown whether these same positive interactions occur between nonnative invaders and native communities. I investigated the effects of natural stress on community interactions between native heathland species and nonnative species with two field studies conducted at the landscape and community scale. At the landscape scale of investigation, nonnative species richness was positively related to native species richness. At the community level, nonnative invaders experienced facilitation with natives in the most stressful zones, whereas they experienced competition with native plants in the less stressful zones of the heathlands. Due to the observational nature of the landscape scale data, it is unclear whether nonnative diversity levels are responding positively to extrinsic factors or to native biodiversity. The experimental component of this research suggests that native community members may ameliorate stressful environmental conditions and facilitate invasion into high stress areas. I present a conceptual model which is a modification of the Shea and Chesson diversity-invasibility model and includes both facilitation as well as competition between the native community and nonnative invaders at the community level, summing to an overall positive relationship at the landscape scale.  相似文献   

12.
The invasion success of introduced plants is frequently explained as a result of competitive interactions with native flora. Although previous theory and experiments have shown that plants are largely equivalent in their competitive effects on each other, competitive nonequivalence is hypothesized to occur in interactions between native and invasive species. Small overlap in resource use with unrelated native species, improved competitiveness, and production of novel allelochemicals are all believed to contribute to the invasiveness of introduced species. I tested all three assumptions in a common-garden experiment by examining the effect of plant origin and relatedness on competition intensity. Competitive interactions were explored within 12 triplets, each consisting of an invasive species, a native congeneric (or confamilial) species, and a native heterogeneric species that are likely to interact in the field. Plants were grown in pots alone or in pairs and in the absence or the presence of activated carbon to control for allelopathy. I found that competition intensity was not influenced by the relatedness or origin of competing neighbors. Although some exotic species may benefit from size advantages and species-specific effects in competitive interactions, none of the three mechanisms investigated is likely to be a principal driver of their invasiveness.  相似文献   

13.
Fragmentation and loss of habitat are major threats to animal communities and are therefore important to conservation. Due to the complexity of the interplay of spatial effects and community processes, our mechanistic understanding of how communities respond to such landscape changes is still poor. Modelling studies have mostly focused on elucidating the principles of community response to fragmentation and habitat loss at relatively large spatial and temporal scales relevant to metacommunity dynamics. Yet, it has been shown that also small scale processes, like foraging behaviour, space use by individuals and local resource competition are also important factors. However, most studies that consider these smaller scales are designed for single species and are characterized by high model complexity. Hence, they are not easily applicable to ecological communities of interacting individuals. To fill this gap, we apply an allometric model of individual home range formation to investigate the effects of habitat loss and fragmentation on mammal and bird communities, and, in this context, to investigate the role of interspecific competition and individual space use. Results show a similar response of both taxa to habitat loss. Community composition is shifted towards higher frequency of relatively small animals. The exponent and the 95%-quantile of the individual size distribution (ISD, described as a power law distribution) of the emerging communities show threshold behaviour with decreasing habitat area. Fragmentation per se has a similar and strong effect on mammals, but not on birds. The ISDs of bird communities were insensitive to fragmentation at the small scales considered here. These patterns can be explained by competitive release taking place in interacting animal communities, with the exception of bird's buffering response to fragmentation, presumably by adjusting the size of their home ranges. These results reflect consequences of higher mobility of birds compared to mammals of the same size and the importance of considering competitive interaction, particularly for mammal communities, in response to landscape fragmentation. Our allometric approach enables scaling up from individual physiology and foraging behaviour to terrestrial communities, and disentangling the role of individual space use and interspecific competition in controlling the response of mammal and bird communities to landscape changes.  相似文献   

14.
Ecological thresholds are manifested as a sudden shift in state of community composition. Recent reviews emphasize the distinction between thresholds due to phase shifts-a shift in the location of an equilibrium-and those due to alternative states-a switch between two equilibria. Here, we consider the boundary of intertidal mussel beds as an ecological threshold and demonstrate that both types of thresholds may exist simultaneously and in close proximity on the landscape. The discrete lower boundary of intertidal mussel beds was long considered a fixed spatial refuge from sea star predators; that is, the upper limit of sea star predation, determined by desiccation tolerance, fixed the lower boundary of the mussel bed. However, recent field experiments have revealed the operation of equilibrium processes that maintain the vertical position of these boundaries. Here, we cast analytical and simulation models in a landscape framework to show how the discrete lower boundary of the mussel bed is a dynamic predator-prey equilibrium, how the character of that boundary depends on its location in the landscape, and how boundary formation is robust to the scale of local interactions.  相似文献   

15.
Scaling up population dynamics: integrating theory and data   总被引:2,自引:0,他引:2  
Melbourne BA  Chesson P 《Oecologia》2005,145(2):178-186
How to scale up from local-scale interactions to regional-scale dynamics is a critical issue in field ecology. We show how to implement a systematic approach to the problem of scaling up, using scale transition theory. Scale transition theory shows that dynamics on larger spatial scales differ from predictions based on the local dynamics alone because of an interaction between local-scale nonlinear dynamics and spatial variation in density or the environment. Based on this theory, a systematic approach to scaling up has four steps: (1) derive a model to translate the effects of local dynamics to the regional scale, and to identify key interactions between nonlinearity and spatial variation, (2) measure local-scale model parameters to determine nonlinearities at local scales, (3) measure spatial variation, and (4) combine nonlinearity and variation measures to obtain the scale transition. We illustrate the approach, with an example from benthic stream ecology of caddisflies living in riffles. By sampling from a simulated system, we show how collecting the appropriate data at local (riffle) scales to measure nonlinearities, combined with measures of spatial variation, leads to the correct inference for dynamics at the larger scale of the stream. The approach provides a way to investigate the mechanisms and consequences of changes in population dynamics with spatial scale using a relatively small amount of field data.  相似文献   

16.
Spatial coexistence of phytoplankton species in ecological timescale   总被引:1,自引:0,他引:1  
The species diversity of phytoplankton is usually very high in wild aquatic systems, as seen in the paradox of plankton. Coexistence of many competitive phytoplankton species is extremely common in nature. However, experiments and mathematical theories show that interspecific competition often leads to the extinction of most inferior species. Here, we present a lattice version of a multi-species Lotka–Volterra competition model to demonstrate the importance of local interaction. Its mathematical equilibrium is the exclusion of all but one superior species. However, temporal coexistence of many competitive species is possible in an ecological time scale if interactions are local instead of global. This implies that the time scale is elongated many orders when interactions are local. Extremely high species diversity of phytoplankton in aquatic systems may be maintained by spatial coexistence in an ecological time scale.Tatsuo Miyazaki, Kei-ichi Tainaka, and Jin Yoshimura contributed equally to this study.  相似文献   

17.
The geographic scaling of biotic interactions   总被引:1,自引:0,他引:1  
A central tenet of ecology and biogeography is that the broad outlines of species ranges are determined by climate, whereas the effects of biotic interactions are manifested at local scales. While the first proposition is supported by ample evidence, the second is still a matter of controversy. To address this question, we develop a mathematical model that predicts the spatial overlap, i.e. co‐occurrence, between pairs of species subject to all possible types of interactions. We then identify the scale of resolution in which predicted range overlaps are lost. We found that co‐occurrence arising from positive interactions, such as mutualism (+/+) and commensalism (+/0), are manifested across scales. Negative interactions, such as competition (?/?) and amensalism (?/0), generate checkerboard patterns of co‐occurrence that are discernible at finer resolutions but that are lost and increasing scales of resolution. Scale dependence in consumer–resource interactions (+/?) depends on the strength of positive dependencies between species. If the net positive effect is greater than the net negative effect, then interactions scale up similarly to positive interactions. Our results challenge the widely held view that climate alone is sufficient to characterize species distributions at broad scales, but also demonstrate that the spatial signature of competition is unlikely to be discernible beyond local and regional scales.  相似文献   

18.
Most of the classical theory on species coexistence has been based on species‐level competitive trade‐offs. However, it is becoming apparent that plant species display high levels of trait plasticity. The implications of this plasticity are almost completely unknown for most coexistence theory. Here, we model a competition–colonisation trade‐off and incorporate trait plasticity to evaluate its effects on coexistence. Our simulations show that the classic competition–colonisation trade‐off is highly sensitive to environmental circumstances, and coexistence only occurs in narrow ranges of conditions. The inclusion of plasticity, which allows shifts in competitive hierarchies across the landscape, leads to coexistence across a much broader range of competitive and environmental conditions including disturbance levels, the magnitude of competitive differences between species, and landscape spatial patterning. Plasticity also increases the number of species that persist in simulations of multispecies assemblages. Plasticity may generally increase the robustness of coexistence mechanisms and be an important component of scaling coexistence theory to higher diversity communities.  相似文献   

19.
A diffusion model of animal dispersal of the type originated by Skellam (1951, Biometrika 38, 196–218) is used to investigate competitive effects between species. The effects of aggregation, dispersal, and nett growth are related to utility functions specific to each species, and to position on an appropriate axis. Utility, in turn, is defined by whatever underlying competition and resource-use models are being used. The analysis enables niche breadth, overlap, and shift, and different measures of competitive effects, to be explicitly related to underlying competitive models, and the method and meaning of regression-based methods of estimating competitive intensity are clarified. Detailed results are given, for a specific example, concerning the effect of exploratory behaviour, local competitive intensity, and niche separation on equilibrium population numbers, competition coefficients, and on niche overlap and its variation with overall population numbers. Niche overlap is shown to be no indicator of the competition coefficient. The results are shown to accord with observational data.  相似文献   

20.
The Lotka-Volterra predator-prey model with prey density dependence shows the final prey density to be independent of its vital rates. This result assumes the community to be well mixed so that encounters between predators and prey occur as a product of the landscape densities, yet empirical evidence suggests that over small spatial scales this may not be the normal pattern. Starting from an individual-based model with neighborhood interactions and movements, a deterministic approximation is derived, and the effect of local spatial structure on equilibrium densities is investigated. Incorporating local movements and local interactions has important consequences for the community dynamics. Now the final prey density is very much dependent on its birth, death, and movement rates and in ways that seem counterintuitive. Increasing prey fecundity or mobility and decreasing the coefficient of competition can all lead to decreases in the final density of prey if the predator is also relatively immobile. However, analysis of the deterministic approximation makes the mechanism for these results clear; each of these changes subtly alters the emergent spatial structure, leading to an increase in the predator-prey spatial covariance at short distances and hence to a higher predation pressure on the prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号