首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Darnell RB 《Cell》2003,115(7):767-768
Two papers from Kausik Si, Eric Kandel, Susan Lindquist, and colleagues set forth a bold new idea for thinking about the mechanisms underlying the generation and maintenance of long-term memories (Si et al., 2003a, 2003b [this issue of Cell]).  相似文献   

2.
3.
The prion paradigm is increasingly invoked to explain the molecular pathogenesis of neurodegenerative diseases involving the misfolding and aggregation of proteins other than the prion protein (PrP). Extensive evidence from in vitro and in vivo studies indicates that misfolded and aggregated Aβ peptide, which is the probable molecular trigger for Alzheimer's disease, manifests all of the key characteristics of canonical mammalian prions. These features include a β-sheet rich architecture, tendency to polymerize into amyloid, templated corruption of like protein molecules, ability to form structurally and functionally variant strains, systematic spread by neuronal transport, and resistance to inactivation by heat and formaldehyde. In addition to Aβ, a growing body of research supports the view that the prion-like molecular transformation of specific proteins drives the onset and course of a remarkable variety of clinicopathologically diverse diseases. As such, the expanded prion paradigm could conceptually unify fundamental and translational investigations of these disorders.  相似文献   

4.
5.
6.
Since the production of Dolly the sheep cloning methods for somatic cells have been thoroughly described and are becoming routine. However, the rate at which live clones are produced remains low in all mammalian species tested so far. Remarkably, irrespective of the cloning protocol or the donor-cell type, all clones display common abnormalities, particularly in the placenta. The process is also complicated by early mortality of somatic-cell clones and the founder mammalian clone, Dolly the sheep, died in February 2003 aged six years. Based on published data and on our own experience, our view is that mammalian somatic-cell cloning and the pioneer nuclear-transfer data from amphibians have much in common. We suggest that the only way to improve nuclear reprogramming is to modify the chromatin structure of somatic cells before nuclear transfer, to provide the oocyte with a chromosomal structure that is more compatible with the natural reprogramming machinery of the oocyte.  相似文献   

7.
8.
Geschwind DH 《Cell》2008,135(3):391-395
Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.  相似文献   

9.
Amyloids are self-assembled fibre-like beta-rich protein aggregates. Amyloidogenic prion proteins propagate amyloid state in vivo and transmit it via infection or in cell divisions. While amyloid aggregation may occur in the absence of any other proteins, in vivo propagation of the amyloid state requires chaperone helpers. Yeast prion proteins contain prion domains which include distinct aggregation and propagation elements, responsible for these functions. Known aggregation and propagation elements are short in length and composed of relatively simple sequences, indicating possible ancient origin. Prion-like self-assembled structures could be involved in the initial steps of biological compartmentalization in early life.  相似文献   

10.
Glucose and sucrose: hazardous fast-food for industrial yeast?   总被引:1,自引:0,他引:1  
Yeast cells often encounter a mixture of different carbohydrates in industrial processes. However, glucose and sucrose are always consumed first. The presence of these sugars causes repression of gluconeogenesis, the glyoxylate cycle, respiration and the uptake of less-preferred carbohydrates. Glucose and sucrose also trigger unexpected, hormone-like effects, including the activation of cellular growth, the mobilization of storage compounds and the diminution of cellular stress resistance. In an industrial context, these effects lead to several yeast-related problems, such as slow or incomplete fermentation, 'off flavors' and poor maintenance of yeast vitality. Recent studies indicate that the use of mutants with altered responses to carbohydrates can significantly increase productivity. Alternatively, avoiding unnecessary exposure to glucose and sucrose could also improve the performance of industrial yeasts.  相似文献   

11.
Normal waking mentation is the outcome of the combined action of both electrophysiological and neurochemical antagonistic and complementary activating and inhibitory influences occurring mainly in the cerebral cortex. The chemical ones are supported principally by acetylcholine, and noradrenaline and serotonin, respectively. During rapid eye movement (REM) sleep, the monoaminergic silence - except dopaminergic ongoing activity - disrupts this equilibrium and seems to be responsible for disturbances of mental activity characteristic of dreaming. This imbalance could cause disconnectivity of cortical areas, failure of latent inhibition and possibly the concomitant prefrontal dorsolateral deactivation. Moreover, the decrease of prefrontal dopaminergic functioning could explain the loss of reflectiveness in this sleep stage. All these phenomena are also encountered in schizophrenia. The psychotic-like mentation of dreaming (hallucinations, delusions, bizarre thought processes) could result from the disinhibition of dopamine influence in the nucleus accumbens by the noradrenergic and serotonergic local silence and/or the lifting of glutamate influence from the prefrontal cortex and hippocampus. We hypothesize that, during REM sleep, the increase of dopamine and the decrease of glutamate release observed in nucleus accumbens reach the threshold values at which psychotic disturbances arise during wakefulness. Whatever the precise mechanism, it seems that the functional state of the prefrontal cortex and nucleus accumbens is the same during dreaming sleep stage and in schizophrenia. The convergent psychological, electrophysiological, tomographic, pharmacological and neurochemical criteria of REM sleep and schizophrenia suggest that this sleep stage could become a good neurobiological model of this psychiatric disease.  相似文献   

12.
Genetic recombination is a basic cellular process required for altering genome structure. The RecA protein of Escherichia coli has a central role in homologous recombination, and a eukaryotic protein with similar properties has been discovered in the yeast Saccharomyces cerevisiae. Unexpectedly, this RecA-like protein has additional biochemical activities, and its function may not be restricted to recombination.  相似文献   

13.
The presence of alpha-synuclein Lewy body pathology is used to distinguish Parkinson's disease from parkinsonism, for which a broader spectrum of neuropathologies, including tau-immunopositive neurofibrillary tangles and ubiquitin inclusions, might accompany nigral neuronal loss. These neuropathologies define the endpoint of many neurodegenerative disorders but might be symptomatic rather than causative. Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) were recently discovered in late-onset parkinsonism, the phenotype of which can be clinically and pathologically indistinguishable from Parkinson's disease. However, in some kindreds with LRRK2- associated disease, pathologically distinct forms of parkinsonism, including nigral neuronal loss with Lewy body disease or tau-immunopositive neurofibrillary tangles, were discovered. Understanding the molecular function of the LRRK2 protein and its associated pathways might elucidate the switch between Lewy body pathology and neurofibrillary tangles, and holds promise for prospective therapeutics that might slow or halt progression of many forms of parkinsonism.  相似文献   

14.
Joel N. Buxbaum 《FEBS letters》2009,583(16):2663-2673
The amyloidoses are the prototype gain of toxic function protein misfolding diseases. As such, several naturally occurring animal models and their inducible variants provided some of the first insights into these disorders of protein aggregation. With greater analytic knowledge and the increasing flexibility of transgenic and gene knockout technology, new models have been generated allowing the interrogation of phenomena that have not been approachable in more reductionist systems, i.e. behavioral readouts in the neurodegenerative diseases, interactions among organ systems in the transthyretin amyloidoses and taking pre-clinical therapeutic trials beyond cell culture. The current review describes the features of both transgenic and non-transgenic models and discusses issues that appear to be unresolved even when viewed in their organismal context.  相似文献   

15.
Different epithelial organs form as a result of epithelial-mesenchymal interactions and share a common theme modulated by variations (Chuong ed. In Molecular Basis of Epithelial Appendage Morphogenesis, 1998). One of the major modulators is the sex hormone pathway that acts on the prototype signaling pathway to alter organ phenotypes. Here, we focus on how the sex hormone pathway may interface with epithelia morphogenesis-related signaling pathways. We first survey these sex hormone-regulated morphogenetic processes in various epithelial organs. Sexual dimorphism of hairs and feathers has implications in sexual selection. Diseases of these pathways result in androgenic alopecia, hirsutism, henny feathering, etc. The growth and development of mammary glands, prostate glands, and external genitalia essential for reproductive function are also dependent on sex hormones. Diseases affecting these organs include congenital anomalies and hormone-dependent breast and prostate cancers. To study the role of sex hormones in new growth in the context of system biology/pathology, an in vivo model in which organ formation starts from stem cells is essential. With recent developments (Yu et al. (2002) The morphogenesis of feathers. Nature 420:308-312), the growth of tail feathers in roosters and hens has become a testable model in which experimental manipulations are possible. We show exemplary data of differences in their growth rate, proliferative cell population, and signaling molecule expression. Working hypotheses are proposed on how the sex hormone pathways may interact with growth pathways. It is now possible to test these hypotheses using the chicken model to learn fundamental mechanisms on how sex hormones affect organogenesis, epithelial organ cycling, and growth-related tumorigenesis.  相似文献   

16.
Episodic memory and common sense: how far apart?   总被引:10,自引:0,他引:10  
Research has revealed facts about human memory in general and episodic memory in particular that deviate from both common sense and previously accepted ideas. This paper discusses some of these deviations in light of the proceedings of The Royal Society's Discussion Meeting on episodic memory. Retrieval processes play a more critical role in memory than commonly assumed; people can remember events that never happened; and conscious thoughts about one's personal past can take two distinct forms-'autonoetic' remembering and 'noetic' knowing. The serial-dependent-independent (SPI) model of the relations among episodic, semantic and perceptual memory systems accounts for a number of puzzling phenomena, such as some amnesic patients' preserved recognition memory and their ability to learn new semantic facts, and holds that episodic remembering of perceptual information can occur only by virtue of its mediation through semantic memory. Although common sense endows many animals with the ability to remember their past experiences, as yet there is no evidence that humanlike episodic memory-defined in terms of subjective time, self, and autonoetic awareness-is present in any other species.  相似文献   

17.
There is increasing evidence that cellular prion protein plays important roles in neurodegeneration and neuroprotection. One of the possible mechanism by which this may occur is a functional inhibition of ionotropic glutamate receptors, including N-Methyl-D-Aspartate (NMDA) receptors. Here we review recent evidence implicating a possible interplay between NMDA receptors and prions in the context of neurodegenerative disorders. Such is a functional link between NMDA receptors and normal prion protein, and therefore possibly between these receptors and pathological prion isoforms, raises interesting therapeutic possibilities for prion diseases.Key words: NMDA, NR2D, glutamate, neuroprotection, calciumPrions are most often discussed in the context of transmissible spongiform encephalopathies (TSEs) which encompass a range of neurological disorders that include human Creutzfeldt-Jakob disease (among others), sheep scrapie and bovine spongiform encephalopathy.1,2 It is well established that these disorders arise from a progressive conversion of the normal, mainly helical form of cellular prion protein (PrPC) into a different PrPSc protein conformation with a high beta sheet content.3 In their PrPSc form, prions act as templates that catalyze misfolding of PrPC to produce increasing levels of PrPSc, which likely represents several or even many different conformational states of the same source protein, resulting in diverse clinical phenotypes. This in turn leads to accumulation of PrPSc deposits in the brain that can appear as aggregates and amyloid-like plaques4 and which disrupt normal neurophysiology.5 While the neuropathology of TSE''s has been explored in great detail dating back to the 1920s,6 less effort has perhaps been expended on understanding the cellular and physiological function of PrPC which is ubiquitously expressed, and found even in simple organisms.5,7,8 A number of mouse lines either lacking PrPC or overexpressing PrPC have been created, including the widely used Zurich I PrPC knockout strain.9,10 Despite the wide distribution of PrPC in the mammalian CNS, it perhaps surprisingly has only a relatively mild behavioral phenotype that appears to include some deficits in spatial learning at the behavioral level11,12 as well as alterations in long term potentiation at the cellular level.1317 In addition, it has been shown that these mice show an increased excitability of hippocampal neurons.13,1820 In contrast, deletion of certain parts of the PrPC protein in vivo can have serious physiological consequences. For example, deletion of a stretch of amino acids between just upstream of the octarepeat copper binding motifs produces a lethal phenotype, that can be rescued by overexpression of increasing levels of normal PrPC.21,22 Of particular note, these deletion mutants show degeneration of axons and myelin, both in the CNS and in peripheral nerves; indeed some mutants show a predilection for axomyelinic degeneration with little neuronal pathology,21 suggesting that certain mutated forms of PrP have a direct toxic effect on oligodendrocytes and/or myelin.23 Moreover, activation of the Dpl1 gene in mice lacking PrPC leads to an ataxic phenotype, that is not observed in the presence of PrPC.24 Collectively, this indicates that PrPC may act in a protective capacity and in contrast, certain abnormal forms of PrP are “toxic”, promoting much more injury to various elements of the CNS and PNS than outright absence of wild-type PrPC.This notion is further corroborated by a number of studies in PrPC knockout mice, both in vivo and in cell culture models. Cultured hippocampal neurons from PrPC null mice display greater apoptosis during oxidative stress.25 Moreover, overexpression of PrPC in rats protects them from neuronal damage during ischemic stroke, whereas PrPC null mice show greater damage.2729 When PrPC null mice are subjected to different types of seizure paradigms, they showed increased mortality and increased numbers of seizures.30 This increased neuronal damage can be diminished by the NMDA receptor blocker MK-801,31 potentially implicating glutamate receptors in this process. Finally, it was recently shown that the absence of PrPC protein protects neurons from the deleterious effects of beta amyloid, a protein involved in Alzheimer disease.32 It is important to note that NMDA receptors have been implicated in seizure disorders and in cell death during ischemic stroke.3335 Indeed, our own work has shown that NMDA receptors expressed endogenously in myelin contribute to myelin damage and may be one of the first steps leading to demyelination.36 Furthermore, the NMDA receptor blocker memantine is used to treat Alzheimer disease, implicating NMDA receptors. The observations above suggest that there may be an interplay between NMDA receptor activity and the physiological function of PrPC. In support of this hypothesis, our recent work has directly identified a common functional and molecular link between NMDA receptors and PrPC.37 Brain slices obtained from Zurich I PrPC null mice showed an increased excitability of hippocampal slices, which could be ablated by blocking NMDA receptor activity with amino-5-phosphonovaleric acid. Removal of extracellular magnesium ions to enhance NMDA receptor activity resulted in stronger pro-excitatory effects in slices and cultured neurons from PrPC null mice compared with those from normal animals. Synaptic recordings indicate that the amplitude and duration of NMDA mediated miniature synaptic currents is increased in PrPC null mouse neurons, and evoked NMDA receptor currents show a dramatic slowing of deactivation kinetics in PrPC null mouse neurons. The NMDA current kinetics observed in these neurons were qualitatively consistent with NMDA receptors containing the NR2D subunit.38 Consistent with a possible involvement of NR2D containing receptors, siRNA knockdown of NR2D normalized current kinetics in PrP-null mouse neurons. Furthermore, a selective co-immunoprecipitation between PrPC and the NR2D, but not NR2B subunits, was observed. This then may suggest the possibility that under normal circumstances, PrPC serves to suppress NR2D function, but when PrPC is absent, NR2D containing receptors become active, and because of their slow kinetics, may contribute to calcium overload under circumstances where excessive (or even normal) levels of glutamate are present. This would include conditions such as epileptic seizures, ischemia and Alzheimer disease, thus providing a possible molecular explanation for the link between PrPC and neuroprotection under pathophysiological conditions. Indeed, NMDA promoted greater toxicity in PrPC null mouse neurons, and upon injection into brains of PrPC null mice. It is interesting to note that one of the major NMDA receptor subtypes expressed in myelin is NR2D, thus bridging the observations of Micu et al.36 of NMDA receptor mediated cell death in ischemic white matter, and those of Baumann and colleagues21 showing that PrPC deletion mutants can cause damage to myelin.How might PrPC deletion mutants affect neuronal survival? One possibility may be that these deletion mutants compete with normal PrPC for NMDA receptors, but are unable to functionally inhibit them. Alternatively, it is possible that the PrPC deletion mutants, by virtue of binding to the receptors, may in fact increase receptor activity, thus causing increased cell death. In both cases, increasing the expression of normal PrPC would be expected to outcompete the deletion variants, thus reestablishing the protective function. A similar mechanism could perhaps apply to TSEs. It is possible that the PrPSc form, perhaps in a manner reminiscent of the PrPC deletion mutants, may be unable to inhibit NMDAR function, or perhaps would even enhance it. Any excess glutamate that may be released as a result of cell damage due to PrPSc aggregates, or even normally released amounts glutamate during the course of physiological neuronal signaling, could be sufficient to cause NMDAR mediated cell death and neuronal degeneration. In this context, it is interesting to note that chronic administration of the weakly NR2D selective inhibitor memantine delays death as a consequence of scrapie infection in mice.39 In the context of Alzheimer disease, binding of PrPC to beta amyloid may prevent the inhibitory action of PrPC on NMDA receptor function, thus increasing NMDA receptor activity and promoting cell death. This then may perhaps explain the beneficial effects of memantine in the treatment of Alzheimer disease.In summary, despite the fact that PrPC is one of the most abundantly expressed proteins in the mammalian CNS, its physiological role is uncertain. Recent observations from our labs have established an unequivocal functional link between normal prion protein and the ubiquitous excitatory NMDA receptor. Thus, one of the key physiological roles of PrPC may be regulation of NMDA receptor activity. The presence of abnormal species of prion protein, whether acquired via “infection”, spontaneous conformational conversion or genetically inherited, may in turn alter normal function and regulation of NMDA receptors, leading to chronic “cytodegeneration” of elements in both gray and white matter regions of the CNS. This key functional link between PrP and glutamate receptors may provide our first opportunity for rational therapeutic design against the devastating spongiform encephalopathies and potentially other neurodegenerative disorders not traditionally considered as TSE''s.  相似文献   

18.
Semaphorins, the plexin family of semaphorin receptors, and scatter factor receptors share evolutionarily conserved protein modules, such as the semaphorin domain and Met Related Sequences (MRS). All these proteins also have in common a role in mediating cell guidance cues. During development, scatter factor receptors control cell migration, epithelial tubulogenesis, and neurite extension. Semaphorins and their receptors are known signals for axon guidance; they are also suspected to regulate developmental processes involving cell migration and morphogenesis, and have been implicated in immune function and tumor progression. Scatter factors and secreted semaphorins are diffusible ligands, whereas membrane-bound semaphorins signal by cell-cell interaction. Cell guidance control by semaphorins requires plexins, alone or in a receptor complex with neuropilins. Semaphorins, besides their role in axon guidance, are expected to have multiple functions in morphogenesis and tissue remodeling by mediating cell-repelling cues through plexin receptors.  相似文献   

19.
DNA photolyases are extremely efficient light-driven DNA repair enzymes that use the energy of a blue-light photon to 'inject' an electron onto UV-damaged DNA, catalyzing the splitting of mutagenic pyrimidine dimers. By contrast, cryptochromes use blue light to trigger signaling cascades in multicellular organisms, fungi and several prokaryotes. Despite these functional differences, both protein families arose from a common ancestor and share many similarities, such as the overall protein fold, the presence of antenna chromophores and the use of flavin adenine dinucleotide (FAD) as the primary reactive group. Several significant advances in the biophysical and structural characterization of photolyases and cryptochromes are now revealing the details of how light-driven redox reactions can be used for such seemingly different purposes.  相似文献   

20.
The purpose of life is its continuation: survival is the reason things live. Here we explore this 'basic' of biology, by reference to the extraordinary life-cycle of the aphid-like pest phylloxera, and the complexity of its relationship with its host the grapevine. The effort and ingenuity that phylloxera employs to continue itself leads to a doubt that survival alone is sufficient reason. It has frequently been suggested that the reduction of life to a catalogue of facts (by science) creates this doubt, because it robs existence of its essence (which is something other than its mechanics). The part that science is said to steal is what Robert Pirsig calls Quality-the harmonious balance of things. Pirsig seems to imply that this is something inherent in things-and independent from us. A more mundane explanation is that the difference between facts and the complete reality is us-the tendency of mind to connect freely between different kinds of information. This possibility is briefly illustrated here by a myth based on the facts of phylloxera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号