首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some lactic acid bacteria produce volatile phenols in culture medium but this activity has not been extensively studied in wine conditions. Red and white wines were mixed with MRS medium at different ratios to study the influence of wine on the metabolism of p-coumaric and ferulic acids by Lactobacillus plantarum. In MRS broth supplemented with these precursors at 10 mg l?1, only 4-ethylphenol was produced (1 mg l?1) while, in the presence of wine, 4-vinylphenol was also obtained. Both volatile phenols are produced in nearly equal amounts (1 mg l?1) or almost only 4-vinylphenol depending on the MRS:wine ratio. Thus, wine favours the accumulation of 4-vinylphenol. Ferulic acid was not or was weakly metabolized in the conditions studied.  相似文献   

2.
Sucrose and inulin, when combined with glucose, behaved as stimulating agents of bacteriocin production by Pediococcus pentosaceus ATCC 43200. When such microbial strain was grown in glucose-based Man, Rogosa, and Sharpe (MRS) medium, without any additional supplement, it showed higher maximum cell concentration (2.68 ± 1.10 g/L) and longer generation time (2.17 ± 0.02 h), but lower specific growth rate (0.32 ± 0.01 h?1) than in the same medium supplemented with 1.0% of both ingredients (2.53 ± 1.10 g/L, 1.60 ± 0.05 h and 0.43 ± 0.02 h?1, respectively). Glucose replacement by sucrose or inulin almost completely suppressed growth, hence confirming that it is the preferred carbon source for this strain. Qualitatively, similar results were observed for lactate production, which was 59.8% higher in glucose-based medium. Enterococcus and Listeria strains were sensitive to bacteriocin, whose antimicrobial effect after 8 h increased from 120.25 ± 0.35 to 144.00 ± 1.41 or 171.00 ± 1.41 AU/mL when sucrose or inulin was added to the glucose-based MRS medium. Sucrose and inulin were also able to speed up P. pentosaceus growth in the exponential phase.  相似文献   

3.
Current separation, isolation and purification techniques to obtain highly potent purified lactobacilli and lactococci bacteriocins include chemical precipitation, separation employing solvents and chromatographic techniques. These methods are arduous, costly, with limited scalability, offering low bacteriocin yields (<20%). To address these challenges, the alternatives of ultrafiltration and nanofiltration, as separation methods were tested. Three promising bacteriocin producing strains, Lactobacillus casei NCIMB 11970, Lactobacillus plantarum NCIMB 8014 and Lactococcus lactis NCIMB 8586 were selected to investigate the applicability and feasibility of the method.To facilitate separation, the microorganisms were grown on specially developed low molecular weight medium (LMWM) mainly containing nutritive sources up to 4 kDa molecular weight. Bacterial cells were removed by centrifugation. The clarified broths were filtered using 4 and 1 kDa MWCO. Bacteriocin activity was determined by an antimicrobial activity test using nisin, which has an inhibitory effect on the growth of susceptible microorganisms. Recovery yields using filtration were found to range between 53 and 68%, a high recovery performance.The bacteriocin activity of crude extracts of all the three lactobacilli were between 95 and 105 IU ml?1. When the substances were separated using ultrafiltration membrane (4 kDa MWCO) their activity was enhanced to 145–150 IU ml?1, achieving a total potency yield of 44–53%. Further enhancement of yields up to 36% was attained employing nanofiltration (1 kDa MWCO) membranes with an activity increased up to 200 IU ml?1.Bacteriocin isolation from crude extracts using filtration was found to be effective, offering high recovery yields, optimising their activity as well as presenting a realistic option towards the formulation of these as commercially available antibacterial agents.  相似文献   

4.
The ability of probiotic Lactobacillus casei LA-1 for bacteriocin production using industrial by-products, such as whey, as supplement in growth medium has been demonstrated for the first time. Whey was investigated as a sole carbon source in cooperation with other components to substitute expensive nutrients as MRS for economical bacteriocin production. Industrial whey-supplemented MRS medium was then selected as to determine the effect of four variables (temperature, initial pH, incubation time, and whey concentration) by response surface methodology on bacteriocin production. Statistical analysis of results showed that two variables have a significant effect on bacteriocin production. Response surface data showed maximum bacteriocin production of 6,132.33?AU/mL at an initial pH of 7.12, temperature 34.29?°C, and whey concentration 13.74?g/L. The production of bacteriocin started during the exponential growth phase, reaching maximum values at stationary phase, and a biphasic growth and production pattern was observed. Our current work demonstrates that this approach of utilization of whey as substitution in costly medium as MRS has great promise for cost reduction in industry for the production of novel biological metabolic product that can be utilized as a food preservative.  相似文献   

5.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

6.
Lactobacillus curvatus LTH 1174, a fermented sausage isolate, produces the antilisterial bacteriocin curvacin A. Its biokinetics of cell growth and bacteriocin production as a function of various concentrations of a complex nutrient source were investigated in vitro during laboratory fermentations with modified MRS medium. A modification of the nutrient depletion model (Leroy and De Vuyst, Appl. Environ, Microbiol. 67:4470-4473, 2001) was used to fit the data describing growth and bacteriocin production. Both cell growth and bacteriocin activity were influenced by changes in the complex nutrient source concentration. Standard MRS medium clearly limited the growth of L. curvatus LTH 1174. Higher nutrient concentrations, up to a certain degree, led to improved growth, a higher attainable biomass concentration, and a higher bacteriocin activity in the supernatant. A lower concentration of complex nutrient source caused severe growth inhibition, leading to a lower biomass concentration but a much higher specific bacteriocin production. When examining the separate components of the complex nutrient source, a stimulating effect of bacteriological peptone on growth was found without an adverse effect on bacteriocin production, resulting in increased curvacin A activity. Furthermore, specific depletion of the amino acids tyrosine, serine, and asparagine/aspartic acid was observed for this strain.  相似文献   

7.
The biofilm formation took place in 48?h within the solid substrate cultivation of Lactobacillus plantarum 8-RA-3 strain on the wheat bran saturated with the MRS medium. The drying of the bran fermented by lactobacilli resulted in a decrease in the number of colony-forming units (CFU) from 23.0?×?108 to 6.9?×?105?CFU/g in daily samples and to less than 104?CFU/g in 2- and 3-day samples. However, according to the fluorescence-based live/dead assay data, more than 40?% of the non-cultured bacteria were viable. As a result of mice kept on a diet with the introduction of bran fermented by Lact. plantarum 8-RA-3 for 72?h into the fodder, a recovery of normal level of intestinal lactobacilli, inhibited by administration of antibiotic was noted. The strain genetically identical to the Lact. plantarum 8-RA-3 was isolated from the feces of these mice. The results indicate that solid substrate cultivated Lact. plantarum 8-RA-3 strain formed a biofilm. Once dried and transferred into a non-cultured state, biofilm cells retained its viability and biological activity.  相似文献   

8.
Lactobacillus plantarum JJ18 and Lactobacillus plantarum subsp. plantarum JJ60, probiotics from idli batter, produce bacteriocins JJ18 and JJ60 having a wide spectrum of activity. After optimising the environmental conditions for bacteriocin production the effect of various media components was determined. Maximum bacteriocin production was observed in MRS broth, pH 6.4 at 37 °C after 36 h. Tryptone (as nitrogen source) and glucose (as carbon source) are required for optimal production of bacteriocins JJ18 and JJ60. Activity was not affected by surfactants like Triton X-100, Tween 80 and Tween 20 or by treatment with NaCl, urea and EDTA. Protease treatment resulted in complete loss of activity of the partially purified bacteriocins JJ18 and JJ60, while lipase and α-amylase had no effect, indicating that the bacteriocin is a simple protein. Tris tricine SDS-PAGE electrophoresis depicted a single band of less than 3.5 kDa. However, the strain Lactobacillus plantarum JJ18 was inhibited by bacteriocin JJ60 and Lactobacillus plantarum JJ60 by bacteriocin JJ18, whereas no inhibition was observed against the respective producer strains, indicating that the two bacteriocins are different. The bacteriocins remained active over a wide range of pH and temperature. The bacteriocins were able to adsorb onto producer and target cells, Lactobacillus plantarum and Listeria monocytogenes and differentially in the presence of various surfactants, salts and solvents. A bactericidal mode of action was observed against Listeria monocytogenes. Given their wide spectrum of activity against various pathogens, the bacteriocins JJ18 and JJ60 can be applied as bio-preservatives in the food industry.  相似文献   

9.
The bacteriocin-producing Lactobacillus plantarum BFE 5092 was assessed for its potential as a protective culture in the biopreservation of aerobically stored turkey meat. This strain produces three bacteriocins, i.e. plantaricins EF, JK and N. The absolute expression of Lactobacillus plantarum BFE 5092 16S rRNA housekeeping gene, as well as l-ldh, plnEF and plnG genes as determined by quantitative, real-time-PCR, revealed that these genes were expressed to similar levels when the strain was grown at 8 and 30 °C in MRS broth. On turkey meat, Lactobacillus plantarum BFE 5092 did not grow but survived, as indicated by similar viable cell numbers during a 9-day storage period at 8 °C. When inoculated at 1 × 107 CFU/g on the turkey meat and subsequently stored at 10 °C, the culture did again not show good growth. Lactobacillus plantarum BFE 5092 could not inhibit the growth of naturally occurring listeriae or Gram-negative bacteria on the turkey meat at 10 °C, or that of Listeria monocytogenes when it was co-inoculated at a level of 1 × 105 CFU/g. Gene expression analyses showed that the bacteriocin genes were expressed on turkey meat stored at 10 °C. Moreover, the investigation into the absolute expression of the three plantaricin genes of Lactobacillus plantarum BFE 5092 in co-culture with Listeria monocytogenes on turkey meat by qRT-PCR showed that the plantaricin genes were indeed expressed during the low-temperature storage condition. The Lactobacillus plantarum BFE 5092 strain overall could not effectively inhibit L. monocytogenes and therefore it would not make a suitable protective culture for biopreservation of turkey meat stored aerobically at low temperature.  相似文献   

10.
The potential of lactic acid bacteria as live vehicles for the production and delivery of therapeutic molecules is being actively investigated today. For future applications it is essential to be able to establish dose-response curves for the targeted biological effect and thus to control the production of a heterologous biopeptide by a live lactobacillus. We therefore implemented in Lactobacillus plantarum NCIMB8826 the powerful nisin-controlled expression (NICE) system based on the autoregulatory properties of the bacteriocin nisin, which is produced by Lactococcus lactis. The original two-plasmid NICE system turned out to be poorly suited to L. plantarum. In order to obtain a stable and reproducible nisin dose-dependent synthesis of a reporter protein (β-glucuronidase) or a model antigen (the C subunit of the tetanus toxin, TTFC), the lactococcal nisRK regulatory genes were integrated into the chromosome of L. plantarum NCIMB8826. Moreover, recombinant L. plantarum producing increasing amounts of TTFC was used to establish a dose-response curve after subcutaneous administration to mice. The induced serum immunoglobulin G response was correlated with the dose of antigen delivered by the live lactobacilli.  相似文献   

11.
The influence of medium components on production of bacteriocins ST242BZ (10.0 kDa) and ST284BZ (3.5 kDa) byLactobacillus paracasei subsp.paracasei ST242BZ and ST284BZ have been studied. Growth in MRS broth (pH of 6.5) yielded bacteriocin levels of 12800 AU/ml. Modified MRS with tryptone as the only nitrogen source, MRS supplemented with KH2PO4 (10–100 g/l), or MRS supplemented with thiamine increased bacteriocin ST242BZ production to 25600 AU/ml. Tryptone, combinations of tryptone, meat extract and yeast extract, or thiamine did not increase bacteriocin ST284BZ production. However, MRS supplemented with K2HPO4 (50–100 g/l) increased bacteriocin ST284BZ production up to 25600 AU/ml. Our results suggest that production of bacteriocins ST242BZ and ST284BZ are stimulated by potassium ions.  相似文献   

12.
The objective of this study was to characterise lactic acid bacteria (LAB) isolated from faecal samples of healthy Ethiopian infants, with emphasis on bacteriocin production and antibiotic susceptibility. One hundred fifty LAB were obtained from 28 healthy Ethiopian infants. The isolates belonged to Lactobacillus (81/150), Enterococcus (54/150) and Streptococcus (15/150) genera. Lactobacillus species were more abundant in the breast-fed infants while Enterococcus dominated the mixed-fed population. Bacteriocin-producing LAB species were isolated from eight of the infants. Many different bacteriocins were identified, including one new bacteriocin from Streptococcus salivarius, avicin A (class IIa) from Enterococcus avium, one class IIa bacteriocin from Enterococcus faecalis strains, one unknown bacteriocin from E. faecalis and two unknown bacteriocins from Lactobacillus fermentum strains and the two-peptide gassericin T from Lactobacillus gasseri isolate. Susceptibility tests performed for nine antibiotics suggest that some lactobacilli might have acquired resistance to erythromycin (3 %) and tetracycline (4 %) only. The streptococci were generally antibiotic sensitive except for penicillin, to which they showed intermediate resistance. All enterococci were susceptible to ampicillin while 13 % showed penicillin resistance. Only one E. faecalis isolate was vancomycin-resistant. Tetracycline (51 %) and erythromycin (26 %) resistance was prevalent among the enterococci, but multidrug resistance was confined to E. faecalis (47 %) and Enterococcus faecium (33 %). Screening of enterococcal virulence traits revealed that 2 % were β-haemolytic. The structural genes of cytolysin were detected in 28 % of the isolates in five enterococcal species, the majority being E. faecalis and Enterococcus raffinosus. This study shows that bacteriocin production and antibiotic resistance is a common trait of faecal LAB of Ethiopian infants while virulence factors occur at low levels.  相似文献   

13.

Objective

To test if the production of bacteriocins by Streptococcus thermophilus is influenced when grown in various complex media commonly used for the culturing of lactic acid bacteria.

Results

Forty-one strains of S. thermophilus were screened for the production of bacteriocins in tryptone/yeast extract/lactose (TYL), M17-lactose (M17L), M17-glucose (M17G) and MRS media. Two strains, ST144 and ST145, were identified as novel bacteriocin producers, with constitutive production observed only in M17G. Strains ST110, ST114 and ST134 constitutively produced bacteriocins in all growth media but ST114 required growth in MRS for its antimicrobial activity to persist in a 24 h culture. The addition of a synthetic quorum sensing peptide (BlpC) induced bacteriocin production by ST106 in all media tested; and by ST118 in TYL and M17L. Strain ST109, which constitutively produced a bacteriocin in TYL and M17 broths, required BlpC induction when grown in MRS. Real-time PCR analysis showed that the natural expression of blpC in ST109 was lower when grown in MRS, suggesting that something in medium interfered with the blp quorum sensing system.

Conclusion

As the choice of growth medium influences both bacteriocin production and peptide stability, several types of production media should be tested when screening for novel bacteriocin-producing strains of S. thermophilus.
  相似文献   

14.
Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced d-lactic acid (DLA) at 12.5 g l?1 in a bioreactor. The values of Leudking–Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l?1) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l?1 with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production.  相似文献   

15.
Aims: To investigate the effects of nisin on lactobacilli contamination of yeast during ethanol fermentation and to determine the appropriate concentration required to control the growth of selected lactobacilli in a YP/glucose media fermentation model. Methods and Results: The lowest concentration of nisin tested (5 IU ml?1) effectively controlled the contamination of YP/glucose media with 106 CFU ml?1 lactobacilli. Lactic acid yield decreased from 5·0 to 2·0 g l?1 and potential ethanol yield losses owing to the growth and metabolism of Lactobacillus plantarum and Lactobacillus brevis were reduced by 11 and 7·8%, respectively. Approximately, equal concentrations of lactic acid were produced by Lact. plantarum and Lact. brevis in the presence of 5 and 2 IU ml?1 nisin, respectively, thus demonstrating the relatively higher nisin sensitivity of Lact. brevis for the strains in this study. No differences were observed in the final ethanol concentrations produced by yeast in the absence of bacteria at any of the nisin concentrations tested. Conclusions: Metabolism of contaminating bacteria was reduced in the presence of 5 IU ml?1 nisin, resulting in reduced lactic acid production and increased ethanol production by the yeast. Significance and Impact of the Study: Bacteriocins represent an alternative to the use of antibiotics for the control of bacterial contamination in fuel ethanol plants and may be important in preventing the emergence of antibiotic‐resistant contaminating strains.  相似文献   

16.
Lactobacillus acidophilus TK8912 produces an antibacterial substance, designated acidocin 8912, which is active against strains of Lactobacillus and Lactococcus. Of all conditions tested, the production of acidocin 8912 was maximum at 30°C in MRS broth. Acidocin 8912 was stable to heat treatment (120°C for 20min), but completely inactivated by protease treatment. Curing a plasmid pLA103 resulted in the loss of both acidocin 8912 production (Acd+) and host immunity (Acdr). A plasmid-cured strain, TK1–4 (Acd- Acd8), was transformed to Acd+Acdr with the pLA103 plasmid. These results provided the first direct evidence in lactobacilli for involvement of this plasmid in bacteriocin production and immunity.  相似文献   

17.
The influence of temperature, initial pH, and carbon and nitrogen sources on bacteriocin secreted by Lactococcus lactis MM19 (MM19) and Pediococcus acidilactici MM33 (MM33) was evaluated. It was found that 30 and 45 °C were the growth temperatures for higher nisin and pediocin production by MM19 and MM33, respectively. The initial pH values for higher production of nisin and pediocin were 9 and 6, respectively. Glucose and wheat peptone E430 were found as suitable carbon and nitrogen sources, respectively, for highest nisin production by MM19 at 30 °C and initial pH of 9. In these conditions, nisin production could be increased by 6.7 times as compared to the control medium (de Man, Rogosa, and Sharpe—MRS broth). Similarly, fructose and pea peptone were suitable carbon and nitrogen sources, respectively, for highest production of pediocin by MM33 at 45 °C and initial pH of 6. In these conditions, pediocin production by MM33 was increased by three times as compared to the control medium (tryptone-glucose-yeast extract—TGE broth).  相似文献   

18.
19.
The production of bacteriocins from cheap substrates could be useful for many food industrial applications. This study aimed at determining the conditions needed for optimal production of enterocins SD1, SD2, SD3 and SD4 secreted by Enterococcus faecium strains SD1, SD2, SD3 and SD4, respectively. To our knowledge, this is the first use of cheese whey—a low-cost milk by-product—as a substrate for bacteriocin production by E. faecium; skimmed milk and MRS broths were used as reference media. This cheese manufacturing residue proved to be a promising substrate for the production of bacteriocins. However, the levels of secreted antimicrobial compounds were lower than those achieved by E. faecium strains in MRS broth. Bacteriocin production was affected strongly by physical and chemical factors such as growth temperature, time of incubation, pH, and the chemical composition of the culture medium. The optimal temperature and time of incubation supporting the highest bacteriocin production was determined for each strain. Different types, sources and amounts of organic nitrogen, sugar, and inorganic salts played an essential role in bacteriocin secretion. E. faecium strains SD1 and SD2—producing high bacteriocin levels both in cheese whey and skimmed milk—could be of great interest for potential applications in cheese-making.  相似文献   

20.
A protease-sensitive antibacterial substance, produced by a strain of Lactobacillus plantarum isolated from fermented corn, was classified as a bacteriocin and designated plantaricin KW30. The bacteriocin was stable to heat, pH and treatment with surfactants, and unaffected by α-amylase, lipase or lysozyme. Plantaricin KW30 exhibited a bactericidal and non-bacteriolytic mode of action against indicator cells, and inhibitory activity was limited to other lactobacilli. Maximum production was in MRS broth, and coincided with the onset of stationary phase under conditions of low pH and high cell numbers. In a complex medium bacteriocin production was enhanced by the presence of sodium acetate and Tween 80. Curing experiments gave derivatives that no longer produced the bacteriocin but retained immunity to it. These Bac derivatives showed the same plasmid pattern as the parent strain suggesting a chromosomal location for the genes for bacteriocin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号