共查询到20条相似文献,搜索用时 0 毫秒
1.
Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-Src activity 总被引:2,自引:0,他引:2
Papp S Fadel MP Kim H McCulloch CA Opas M 《The Journal of biological chemistry》2007,282(22):16585-16598
Calreticulin is an endoplasmic reticulum Ca2+-storage protein, which influences gene expression and cell adhesion. In this study, we show that calreticulin induces fibronectin gene expression and matrix deposition, leading to differences in cell spreading and focal adhesion formation in cells differentially expressing calreticulin. We further show that these effects of calreticulin occur via a c-Src-regulated pathway and that c-Src activity is inversely related to calreticulin abundance. Since c-Src is an important regulator of focal contact turnover, we investigated the effect of c-Src inhibition on cells differentially expressing calreticulin. Inhibition of c-Src rescued the poorly adhesive phenotype of the calreticulin-underexpressing cells in that they became well spread, commenced formation of numerous focal contacts, and deposited a rich fibronectin matrix. Importantly, we show that c-Src activity is dependent on releasable Ca2+ from the endoplasmic reticulum, thus implicating Ca2+-sensitive pathways that are affected by calreticulin in cell-substratum adhesion. We propose that calreticulin affects fibronectin synthesis and matrix assembly via the regulation of fibronectin gene expression. In parallel, calcium-dependent effects of calreticulin on c-Src activity influence the formation and/or stability of focal contacts, which are instrumental in matrix assembly and remodeling. 相似文献
2.
3.
4.
Tension is required but not sufficient for focal adhesion maturation without a stress fiber template
Focal adhesion composition and size are modulated in a myosin II-dependent maturation process that controls adhesion, migration, and matrix remodeling. As myosin II activity drives stress fiber assembly and enhanced tension at adhesions simultaneously, the extent to which adhesion maturation is driven by tension or altered actin architecture is unknown. We show that perturbations to formin and α-actinin 1 activity selectively inhibited stress fiber assembly at adhesions but retained a contractile lamella that generated large tension on adhesions. Despite relatively unperturbed adhesion dynamics and force transmission, impaired stress fiber assembly impeded focal adhesion compositional maturation and fibronectin remodeling. Finally, we show that compositional maturation of focal adhesions could occur even when myosin II-dependent cellular tension was reduced by 80%. We propose that stress fiber assembly at the adhesion site serves as a structural template that facilitates adhesion maturation over a wide range of tensions. This work identifies the essential role of lamellar actin architecture in adhesion maturation. 相似文献
5.
Valtcheva-Sarker R Stephanova E Hristova K Altankov G Momchilova A Pankov R 《Molecular and cellular biochemistry》2007,295(1-2):59-64
Halothane is a volatile anaesthetic, which is known to induce alterations in cellular plasma membranes, modulating the physical
state of the membrane lipids and/or interacting directly with membrane-bound proteins, such as integrin receptors. Integrin-mediated
cell adhesion is a general property of eukaryotic cells, which is closely related to cell viability. Our previous investigations
showed that halothane is toxic for A 549 lung carcinoma cells when applied at physiologically relevant concentrations and
causes inhibition of adhesion to collagen IV.
The present study is focused on the mechanisms underlying halothane toxicity. Our results imply that physiologically relevant
concentrations of halothane disrupt focal adhesion contacts in A 549 cells, which is accompanied with suppression of focal
adhesion kinase activity and paxillin phosphorylation, and not with proteolytic changes or inhibition of vinculin and paxillin
expression.
We suggest that at least one of the toxic effects of halothane is due to a decreased phosphorylation of the focal contact
proteins. 相似文献
6.
Paxillin binding is not the sole determinant of focal adhesion localization or dominant-negative activity of focal adhesion kinase/focal adhesion kinase-related nonkinase 下载免费PDF全文
Cooley MA Broome JM Ohngemach C Romer LH Schaller MD 《Molecular biology of the cell》2000,11(9):3247-3263
The carboxy-terminal 150 residues of the focal adhesion kinase (FAK) comprise the focal adhesion-targeting sequence, which is responsible for its subcellular localization. The mechanism of focal adhesion targeting has not been fully elucidated. We describe a mutational analysis of the focal adhesion-targeting sequence of FAK to further examine the mechanism of focal adhesion targeting and explore additional functions encoded by the carboxy-terminus of FAK. The results demonstrate that paxillin binding is dispensable for focal adhesion targeting of FAK. Cell adhesion-dependent tyrosine phosphorylation strictly correlated with the ability of mutants to target to focal adhesions. Focal adhesion targeting was also a requirement for maximal FAK-dependent tyrosine phosphorylation of paxillin and FAK-related nonkinase (FRNK)-dependent inhibition of endogenous FAK function. However, there were additional requirements for these latter functions because we identified mutants that target to focal adhesions, yet are defective for the induction of paxillin phosphorylation or the dominant-negative function of FRNK. Furthermore, the paxillin-binding activity of FRNK mutants did not correlate with their ability to inhibit FAK, suggesting that FRNK has other targets in addition to paxillin. 相似文献
7.
Many cell types modulate growth, differentiation, and motility through changes in cell substrate adhesion, including regulation of focal contact formation. Clustering of cell surface adhesion receptors is an essential early step in the development of focal contacts, and thus may influence cell physiology. In this paper, we present a theoretical framework to examine how cell surface chemistry affects receptor clustering. Our one-dimensional tape-peeling model couples the equations of mechanical equilibrium for a cell membrane with kinetic receptor-ligand binding relations. We considered two distinct model scenarios: Adhesion mediated by multiple receptor-ligand interactions of different length and specific binding of a single receptor type occurs in the presence of van der Waals attraction and nonspecific repulsion. In each case, nonuniform (wave-like) membrane morphologies are observed in certain parameter ranges that support the clustering of adhesion receptors. The formation of these morphologies is described in terms of a balance of membrane stresses; when cell-surface potential as a function of separation distance is symmetric between two potential energy minima, nonuniform morphologies are obtained. Increases in the chemical binding energy between receptor and ligand (e.g., increases in ligand density) or decreases in the membrane rigidity result in smaller wavelengths for nonuniform interfaces. Additionally, we show wave-like geometries appear only when the mechanical compliance of receptor-ligand bonds is within an intermediate range, and examine how the mobility of "repellers"--glycocalyx molecules that exert a nonspecific repulsive force--influences membrane morphology. We find fully mobile repellers always redistribute to prevent nonuniform morphologies. 相似文献
8.
9.
To evaluate the effect of age and season on Sertoli cell number per paired testes, ratio of germ cells per Sertoli cell, and daily sperm production, testes were obtained from 184 adult (4-20 yr) stallions at slaughter throughout one year. Numbers of Sertoli cells or germ cells were derived from nuclear volume density, volume of individual nuclei, and parenchymal volume. Germ cell to Sertoli cell ratios were calculated from cell numbers. Regression analysis was used to detect age-related differences in the breeding season (May-Jul) or throughout the year. A two-way analysis of variance was used to evaluate time periods (Nov-Jan, Feb-Apr, May-Jul, and Aug-Oct) and age groups (4-5.5, 6-12.5, or 13-20 yr). Paired parenchymal weight and daily sperm production per horse increased significantly with age. Neither regression nor analysis of variance revealed an effect of age on Sertoli cell number. While season contributed (p less than 0.01) to variation in Sertoli cell number per horse, there was no (p greater than 0.05) age x season interaction or age effect on Sertoli cell number. In testes obtained from adult stallions, age had no effect on the number of Sertoli cells per horse, the ratio of maturation-phase spermatids to Sertoli cells, or the ratio of all stage VIII germ cells to Sertoli cells. Given no age effect within a given season on Sertoli cell number per horse, the number of Sertoli cells in the recrudesced testis of the breeding season probably is not significantly different for a given stallion between 4 and 20 yr of age. 相似文献
10.
Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates 总被引:3,自引:0,他引:3
Balaban NQ Schwarz US Riveline D Goichberg P Tzur G Sabanay I Mahalu D Safran S Bershadsky A Addadi L Geiger B 《Nature cell biology》2001,3(5):466-472
Mechanical forces play a major role in the regulation of cell adhesion and cytoskeletal organization. In order to explore the molecular mechanism underlying this regulation, we have investigated the relationship between local force applied by the cell to the substrate and the assembly of focal adhesions. A novel approach was developed for real-time, high-resolution measurements of forces applied by cells at single adhesion sites. This method combines micropatterning of elastomer substrates and fluorescence imaging of focal adhesions in live cells expressing GFP-tagged vinculin. Local forces are correlated with the orientation, total fluorescence intensity and area of the focal adhesions, indicating a constant stress of 5.5 +/- 2 nNmicrom(-2). The dynamics of the force-dependent modulation of focal adhesions were characterized by blocking actomyosin contractility and were found to be on a time scale of seconds. The results put clear constraints on the possible molecular mechanisms for the mechanosensory response of focal adhesions to applied force. 相似文献
11.
Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are anti- adhesive 总被引:6,自引:9,他引:6 下载免费PDF全文
《The Journal of cell biology》1991,115(3):779-794
Regulation by the extracellular matrix (ECM) of migration, motility, and adhesion of olfactory neurons and their precursors was studied in vitro. Neuronal cells of the embryonic olfactory epithelium (OE), which undergo extensive migration in the central nervous system during normal development, were shown to be highly migratory in culture as well. Migration of OE neuronal cells was strongly dependent on substratum- bound ECM molecules, being specifically stimulated and guided by laminin (or the laminin-related molecule merosin) in preference to fibronectin, type I collagen, or type IV collagen. Motility of OE neuronal cells, examined by time-lapse video microscopy, was high on laminin-containing substrata, but negligible on fibronectin substrata. Quantitative assays of adhesion of OE neuronal cells to substrata treated with different ECM molecules demonstrated no correlation, either positive or negative, between the migratory preferences of cells and the strength of cell-substratum adhesion. Moreover, measurements of cell adhesion to substrata containing combinations of ECM proteins revealed that laminin and merosin are anti-adhesive for OE neuronal cells, i.e., cause these cells to adhere poorly to substrata that would otherwise be strongly adhesive. The evidence suggests that the anti- adhesive effect of laminin is not the result of interactions between laminin and other ECM molecules, but rather an effect of laminin on cells, which alters the way in which cells adhere. Consistent with this view, laminin was found to interfere strongly with the formation of focal contacts by OE neuronal cells. 相似文献
12.
Exercise-induced oxidative stress affects erythrocytes in sedentary rats but not exercise-trained rats. 总被引:3,自引:0,他引:3
U K Sentürk F Gündüz O Kuru M R Aktekin D Kipmen O Yal?in M Bor-Kü?ükatay A Ye?ilkaya O K Ba?kurt 《Journal of applied physiology》2001,91(5):1999-2004
Oxidant stress is one of the factors proposed to be responsible for damaged erythrocytes observed during and after exercise. The impact of exertional oxidant stress after acute exhaustive treadmill running on erythrocyte damage was investigated in sedentary (Sed) and exercise-trained (ET) rats treated with or without antioxidant vitamins C and E. Exhaustive exercise led to statistically significant increments in the levels of thiobarbituric acid-reactive substance (TBARS) and H2O2-induced TBARS in Sed rats and resulted in functional and structural alterations in erythrocytes (plasma hemoglobin concentrations, methemoglobin levels, and rise in osmotic fragility of erythrocytes with decrease in erythrocyte deformability). Administration of antioxidant vitamin for 1 mo before exhaustive exercises prevented lipid peroxidation (TBARS, H2O2-induced TBARS) in Sed rats without any functional or structural alterations in erythrocytes. Parameters indicating erythrocyte lipid peroxidation and deterioration after exhaustive exercise in rats trained regularly with treadmill running for 1 mo were not different from those in Sed controls. Erythrocyte lipid peroxidation (TBARS) increased in exhausted-ET rats compared with ET controls; however, the plasma hemoglobin, methemoglobin levels, and erythrocyte osmotic fragility and deformability did not differ. Exhaustive exercise-induced lipid peroxidation in ET rats on antioxidant vitamin treatment was prevented, whereas functional and structural parameters of erythrocytes were not different from those of the ET controls. We conclude that exertional oxidant stress contributed to erythrocyte deterioration due to exercise in Sed but not in ET rats. 相似文献
13.
Glycoproteins and glycosaminoglycans synthesized by human keratinocytes in culture. Their role in cell-substratum adhesion. 总被引:1,自引:1,他引:1 下载免费PDF全文
Glycoproteins and proteoglycans synthesized by human keratinocytes in medium containing D-[1-14C]glucosamine were extracted and analysed by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. Extraction of the labelled keratinocytes with 0.5% Triton X-100 removed most of the glycoconjugates and left the cytoskeleton and nuclear residue adherent to the substratum. In addition to the cytoskeletal proteins, there was a relatively simple profile of glycoproteins and glycosaminoglycans associated with this adherent cytoskeleton. These consisted of eight glycoproteins in the mol.wt. range 99000-232000, five proteins in the keratin region (mol.wt. 42000-61000), hyaluronic acid and a sulphated glycosaminoglycan. Surface labelling of the keratinocytes with galactose oxidase (with or without neuraminidase)/KB3H4 revealed that many of the glycoproteins were exposed on the cell surface. The importance of the glycoproteins and proteoglycans in attaching the keratinocytes to the substratum was examined by studying their expression after incubation in medium containing tunicamycin and their degradation after digestion with trypsin and hyaluronidase. These studies, together with an examination of the glycoconjugates released by sequential extraction with 0.5% Triton X-100 followed by 0.2% sodium dodecyl sulphate, revealed that the glycoprotein of mol.wt. 232000 has an important role in mediating the attachment of keratinocytes to the substratum. 相似文献
14.
Pérez-Rodríguez L Alonso-Alvarez C Viñuela J 《Physiological and biochemical zoology : PBZ》2007,80(2):250-254
Carotenoid pigments have become a central subject of research on animal signaling systems during the past decade. Thus, measurement of plasma carotenoid levels is widespread in the literature. Many plasma biochemical parameters tend to vary with the hour of sampling, which may be an important source of sampling error. However, little is known about this kind of variation for circulating carotenoids. With a sampling protocol that allowed us to separately analyze the effect of sampling hour and repeated blood extraction at the within-individual level, we evaluated the effect of these two parameters on plasma carotenoid concentration in captive red-legged partridges (Alectoris rufa). The hour of sampling did not show a significant influence on carotenoid variability. Nevertheless, carotenoid levels significantly decreased as a result of repeated sampling. In fact, carotenoid variability was positively related to hematocrit values, which also decreased throughout the experiment. Furthermore, the effect was evident from the second sampling event. These results suggest that blood samples for carotenoid analysis may be obtained at random during the daytime with no serious risk of adding variance to data obtained. However, the effect of hemodilution associated with repeated blood extraction should be carefully considered in those studies involving repeated sampling. 相似文献
15.
《Plant science》1986,44(1):65-71
The antibiotic tunicamycin which specifically blocks the first step in the lipid-linked oligosaccharide pathway is capable of arresting somatic embryogenesis in a reversible way. At the same drug concentration cell proliferation is not affected. The quantitative and qualitative changes induced by tunicamycin in glycolipids and glycoproteins are the same in embryogenic and non-embryogenic conditions and this might therefore indicate some proteins whose glycosylation is essential for development. 相似文献
16.
Osteopontin affects macrophage polarization promoting endocytic but not inflammatory properties 下载免费PDF全文
Karina Schuch Bettina Wanko Katharina Ambroz Alexandra Castelo‐Rosa Verónica Moreno‐Viedma Nicole G. Grün Lukas Leitner Günther Staffler Maximilian Zeyda Thomas M. Stulnig 《Obesity (Silver Spring, Md.)》2016,24(7):1489-1498
17.
Syndecan-4 and focal adhesion function. 总被引:6,自引:0,他引:6
Two groups have now reported the viability of mice that lack syndecan-4. These mice have wound healing/angiogenesis problems, and fibroblasts from these animals differ in adhesion and migration from normal. This is consistent with recent in vitro data indicating a need for signaling via syndecan-4 for focal adhesion formation, and reports that overexpression of proteins that bind syndecan-4 can modify cell adhesion and migration. 相似文献
18.
Urra H Torres VA Ortiz RJ Lobos L Díaz MI Díaz N Härtel S Leyton L Quest AF 《PloS one》2012,7(4):e33085
Caveolin-1 is known to promote cell migration, and increased caveolin-1 expression is associated with tumor progression and metastasis. In fibroblasts, caveolin-1 polarization and phosphorylation of tyrosine-14 are essential to promote migration. However, the role of caveolin-1 in migration of metastatic cells remains poorly defined. Here, caveolin-1 participation in metastatic cell migration was evaluated by shRNA targeting of endogenous caveolin-1 in MDA-MB-231 human breast cancer cells and ectopic expression in B16-F10 mouse melanoma cells. Depletion of caveolin-1 in MDA-MB-231 cells reduced, while expression in B16-F10 cells promoted migration, polarization and focal adhesion turnover in a sequence of events that involved phosphorylation of tyrosine-14 and Rac-1 activation. In B16-F10 cells, expression of a non-phosphorylatable tyrosine-14 to phenylalanine mutant failed to recapitulate the effects observed with wild-type caveolin-1. Alternatively, treatment of MDA-MB-231 cells with the Src family kinase inhibitor PP2 reduced caveolin-1 phosphorylation on tyrosine-14 and cell migration. Surprisingly, unlike for fibroblasts, caveolin-1 polarization and re-localization to the trailing edge were not observed in migrating metastatic cells. Thus, expression and phosphorylation, but not polarization of caveolin-1 favor the highly mobile phenotype of metastatic cells. 相似文献
19.
Drosophila PS integrins recognize vertebrate vitronectin and function as cell-substratum adhesion receptors in vitro. 总被引:3,自引:0,他引:3
Using the Drosophila cell line MLDmBG-1, a monoclonal antibody aBG-1 that can inhibit not only cell clumping but also cell spreading was generated. This antibody immunoprecipitates a complex of molecules consisting of a major 120 x 10(3) Mr and other components. To characterize the 120 x 10(3) Mr component, we purified it, generated antibodies to it, and cloned its cDNA. Sequencing of this cDNA suggests that the 120 x 10(3) Mr molecule is identical to PS beta, a beta chain of Drosophila integrins. The other components immunoprecipitated included two alpha chains of Drosophila integrins, PS1 alpha and PS2 alpha, as revealed using specific antibodies to these molecules. These suggest that aBG-1 recognizes the PS beta associated with PS1 alpha or PS2 alpha. However, immunostaining of embryos and larvae with aBG-1 showed that the staining pattern is similar to that for PS2 alpha but not for PS beta, suggesting that the antibody preferentially recognizes the PS beta associated with particular alpha chains in situ. We then attempted to characterize the ligands for these integrin complexes, using culture dishes coated with various vertebrate matrix proteins. These cells spread very well on dishes coated with vitronectin and, to a lesser extent, on those with fibronectin. This spreading was partially inhibited by aBG-1, but not by other control antibodies or RGD peptides. The cell attachment to these substrata was not affected by the antibody. The cells also can attach to dishes coated with laminin but without spreading, and this attachment was not inhibited by aBG-1. Furthermore, they do not attach to dishes coated with collagen type I, type IV, and fibrinogen. These results indicate that Drosophila PS integrins can recognize vertebrate vitronectin, and also fibronectin with a weaker affinity, at sites other than RGD sequences, and thus can function in cell-substratum adhesion. 相似文献
20.
In regions of focal adhesion, cells adhere to a substrate through the interaction of extracellular matrix proteins and transmembrane integrins which are coupled to the cell skeleton. It is generally assumed that the plasma membrane is brought to close proximity to the substrate there. We used the novel method of fluorescence interference contrast (FLIC) microscopy to measure the distance of the plasma membrane of GD25 fibroblasts on silica coated with fibronectin. We correlated the distance map with the distribution of vinculin tagged with green fluorescent protein. We found that the major part of the membrane was separated by 50 nm from the substrate. With respect to this plateau, we found spots of upward deformation and of close adhesion as well as a general ruffling of the membrane. There was no correlation between the areas of close adhesion and the distribution of vinculin. We conclude that focal adhesion does not imply a close attachment of membrane and substrate. 相似文献