首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reiter TA  Reiter NJ  Rusnak F 《Biochemistry》2002,41(51):15404-15409
Bacteriophage lambda protein phosphatase (lambdaPP) is a member of a large family of metal-containing phosphoesterases, including purple acid phosphatase, protein serine/threonine phosphatases, 5'-nucleotidase, and DNA repair enzymes such as Mre11. lambdaPP can be activated several-fold by various divalent metal ions, with Mn(2+) and Ni(2+) providing the most significant activation. Despite the extensive characterization of purified lambdaPP in vitro, little is known about the identity and stoichiometry of metal ions used by lambdaPP in vivo. In this report, we describe the use of metal analysis, activity measurements, and whole cell EPR spectroscopy to investigate in vivo metal binding and activation of lambdaPP. Escherichia coli cells overexpressing lambdaPP show a 22.5-fold increase in intracellular Mn concentration and less dramatic changes in the intracellular concentration of other biologically relevant metal ions compared to control cells that do not express lambdaPP. Phosphatase activity assessed using para-nitrophenylphosphate as substrate is increased 850-fold in cells overexpressing lambdaPP, indicating the presence of metal-activated enzyme in cell lysate. EPR spectra of intact cells overexpressing lambdaPP exhibit resonances previously attributed to mononuclear Mn(2+) and dinuclear [(Mn(2+))(2)] species bound to lambdaPP. Spin quantitation of EPR spectra of intact E. coli cells overexpressing lambdaPP indicates the presence of approximately 40 microM mononuclear Mn(2+)-lambdaPP and 60 microM [(Mn(2+))(2)]-lambdaPP. The data suggest that overexpression of lambdaPP results in a mixture of apo-, mononuclear-Mn(2+), and dinuclear-[(Mn(2+))(2)] metalloisoforms and that Mn(2+) is a physiologically relevant activating metal ion in E. coli.  相似文献   

2.
The expression of fumarate reductase and other enzymes of anaerobic respiration in Escherichia coli was studied as a function of the redox potential (Eh) in the medium. Redox potentials up to +300 mV allowed full expression of fumarate reductase (frd) genes. Higher values resulted in decreased expression. The relationship between Eh and expression of frd could be approximated by the Nernst equation, assuming a redox couple with a midpoint potential Eo' = +400 mV to 440 mV. At Eh values greater than +510 mV (generated anaerobically by hexacyanoferrate(III] the degree of repression was the same as that obtained by O2. Hexacyanoferrate(III) also caused decreased activities of dimethylsulphoxide (DMSO), nitrite and nitrate reductases. Since expression of these enzymes depends on FNR, the gene activator of anaerobic respiratory genes, it is suggested that the function of FNR is controlled by a redox couple of Eo' = +400 mV to 440 mV.  相似文献   

3.
Recombinant phospholipase D (PLD) from Streptomyces chromofuscus (scPLD) has been characterized using colorimetric assays, spectroscopic investigations, and site-directed mutagenesis. scPLD, which shows phosphodiesterase activity toward a wide variety of phospholipids and phosphatase activity toward p-nitrophenyl phosphate, exhibits a visible absorption band with lambda(max) at 570 nm. Metal ion analysis performed by inductively coupled plasma mass spectroscopy shows the presence of approximately 1 equivalent of iron, 0.27 equivalent of manganese, and 0.1 equivalent of zinc per mole of protein as isolated. The metal ion content coupled with the visible absorption feature is compatible with the presence of Fe(3+)-tyrosinate coordination. When scPLD was dialyzed against solutions containing Mn(2+), Zn(2+) or EDTA, the Fe(3+) content was reduced to variable extents, and the residual specific activity correlated well with the residual iron content. Sequence homology with metal ion binding motifs in known alkaline phosphatases and purple acid phosphatase from red kidney bean shows that most of the residues involved in metal ion coordination are conserved among all the sequences considered. Mutation of some of these conserved residues (C123A, D151A, Y154F, and H391A) produced enzymes lacking iron with dramatically reduced PLD activity but little change in secondary structure or ability to bind to small unilamellar vesicles of phosphatidylcholine (with Ba(2+)) or phosphatidic acid. We suggest that scPLD is a member of a family of phosphodiesterase/phosphatases with structural and mechanistic similarity to iron-dependent purple acid phosphatases.  相似文献   

4.
Periplasmic SER (selenate reductase) from Thauera selenatis is classified as a member of the Tat (twin-arginine translocase)-translocated (Type II) molybdoenzymes and comprises three subunits each containing redox cofactors. Variable-temperature X-band EPR spectra of the purified SER complex showed features attributable to centres [3Fe-4S]1+, [4Fe-4S]1+, Mo(V) and haem-b. EPR-monitored redox-potentiometric titration of the SerABC complex (SerA-SerB-SerC, a hetero-trimetric complex of alphabetagamma subunits) revealed that the [3Fe-4S] cluster (FS4, iron-sulfur cluster 4) titrated as n=1 Nernstian component with a midpoint redox potential (E(m)) of +118+/-10 mV for the [3Fe-4S]1+/0 couple. A [4Fe-4S]1+ cluster EPR signal developed over a range of potentials between 300 and -200 mV and was best fitted to two sequential Nernstian n=1 curves with midpoint redox potentials of +183+/-10 mV (FS1) and -51+/-10 mV (FS3) for the two [4Fe-4S]1+/2+ cluster couples. Upon further reduction, the observed signal intensity of the [4Fe-4S]1+ cluster decreases. This change in intensity can again be fitted to an n=1 Nernstian component with a midpoint potential (E(m)) of about -356 mV (FS2). It is considered likely that, at low redox potential (E(m) less than -300 mV), the remaining oxidized cluster is reduced (spin S=1/2) and strongly spin-couples to a neighbouring [4Fe-4S]1+ cluster rendering both centres EPR-silent. The involvement of both [3Fe-4S] and [4Fe-4S] clusters in electron transfer to the active site of the periplasmic SER was demonstrated by the re-oxidation of the clusters under anaerobic selenate turnover conditions. Attempts to detect a high-spin [4Fe-4S] cluster (FS0) in SerA at low temperature (5 K) and high power (100 mW) were unsuccessful. The Mo(V) EPR recorded at 60 K, in samples poised at pH 6.0, displays principal g values of g3 approximately 1.999, g2 approximately 1.996 and g1 approximately 1.965 (g(av) 1.9867). The dominant features at g2 and g3 are not split, but hyperfine splitting is observed in the g1 region of the spectrum and can be best simulated as arising from a single proton with a coupling constant of A1 (1H)=1.014 mT. The presence of the haem-b moiety in SerC was demonstrated by the detection of a signal at g approximately 3.33 and is consistent with haem co-ordinated by methionine and lysine axial ligands. The combined evidence from EPR analysis and sequence alignments supports the assignment of the periplasmic SER as a member of the Type II molybdoenzymes and provides the first spectro-potentiometric insight into an enzyme that catalyses a key reductive reaction in the biogeochemical selenium cycle.  相似文献   

5.
CymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H(2)O co-ordination lying adjacent to the quinol-binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (approximately -240 mV) and low-spin (approximately -110, -190 and -265 mV) haems that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (E(m) = -80 mV) in the presence of NADH (E(m) = -320 mV) and an NADH-menadione (2-methyl-1,4-naphthoquinone) oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H2 oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a non-haem co-factor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc3 (flavocytochrome c3 fumarate reductase). The implications for CymA supporting the respiratory flexibility of shewanellae are discussed.  相似文献   

6.
Reduction potentials for the catalytic compound I/compound II and compound II/Fe3+ redox couples, and for the two-electron compound I/Fe3+ redox couple, have been determined for ascorbate peroxidase (APX) and for a number of site-directed variants. For the wild type enzyme, the values are E degrees '(compound I/compound II) = 1156 mV, E degrees '(compound II/Fe3+) = 752 mV, and E degrees '(compound I/Fe3+) = 954 mV. For the variants, the analysis also includes determination of Fe3+/Fe2+ potentials which were used to calculate (experimentally inaccessible) E degrees '(compound II/Fe3+) potentials. The data provide a number of new insights into APX catalysis. The measured values for E degrees '(compound I/compound II) and E degrees '(compound II/Fe3+) for the wild type protein account for the much higher oxidative reactivity of compound I compared to compound II, and this correlation holds for a number of other active site and substrate binding variants of APX. The high reduction potential for compound I also accounts for the known thermodynamic instability of this intermediate, and it is proposed that this instability can account for the deviations from standard Michaelis kinetics observed for most APX enzymes during steady-state oxidation of ascorbate. This study provides the first systematic evaluation of the redox properties of any ascorbate peroxidase using a number of methods, and the data provide an experimental and theoretical framework for accurate determination of the redox properties of Fe3+, compound I, and compound II species in related enzymes.  相似文献   

7.
Phospholipase D from Streptomyces chromofuscus (sc-PLD) is a member of the diverse family of metallo-phosphodiesterase/phosphatase enzymes that also includes purple acid phosphatases, protein phosphatases, and nucleotide phosphodiesterases. Whereas iron is an essential cofactor for scPLD activity, Mn2+ is also found in the enzyme. A third metal ion, Ca2+, has been shown to enhance scPLD catalytic activity although it is not an essential cofactor. Sequence alignment of scPLD with known phosphodiesterases and phosphatases requiring metal ions suggested that His-212, Glu-213, and Asp-389 could be involved in Mn2+ binding. H212A, E213A, and D389A were prepared to test this hypothesis. These three mutant enzymes and wild type scPLD show similar metal content but considerably different catalytic properties, suggesting different roles for each residue. His-212 appears involved in binding the phosphate group of substrates, whereas Glu-213 acts as a ligand for Ca2+. D389A showed a greatly reduced phosphodiesterase activity but almost unaltered ability to hydrolyze the phosphate group in p-nitrophenyl phosphate suggesting it had a critical role in aligning groups at the active site to control phosphodiesterase versus phosphatase activities. We propose a model for substrate and cofactor binding to the catalytic site of scPLD based on these results and on sequence alignment to purple acid phosphatases of known structure.  相似文献   

8.
Ishikita H  Knapp EW 《Biochemistry》2005,44(45):14772-14783
In photosystem II (PSII), the redox properties of the non-heme iron complex (Fe complex) are sensitive to the redox state of quinones (Q(A/)(B)), which may relate to the electron/proton transfer. We calculated the redox potentials for one-electron oxidation of the Fe complex in PSII [E(m)(Fe)] based on the reference value E(m)(Fe) = +400 mV at pH 7 in the Q(A)(0)Q(B)(0) state, considering the protein environment in atomic detail and the associated changes in protonation pattern. Our model yields the pH dependence of E(m)(Fe) with -60 mV/pH as observed in experimental redox titration. We observed significant deprotonation at D1-Glu244 in the hydrophilic loop region upon Fe complex oxidation. The calculated pK(a) value for D1-Glu244 depends on the Fe complex redox state, yielding a pK(a) of 7.5 and 5.5 for Fe(2+) and Fe(3+), respectively. To account for the pH dependence of E(m)(Fe), a model involving not only D1-Glu244 but also the other titratable residues (five Glu in the D-de loops and six basic residues near the Fe complex) seems to be needed, implying the existence of a network of residues serving as an internal proton reservoir. Reduction of Q(A/B) yields +302 mV and +268 mV for E(m)(Fe) in the Q(A)(-)Q(B)(0) and Q(A)(0)Q(B)(-) states, respectively. Upon formation of the Q(A)(0)Q(B)(-) state, D1-His252 becomes protonated. Forming Fe(3+)Q(B)H(2) by a proton-coupled electron transfer process from the initial state Fe(2+)Q(B)(-) results in deprotonation of D1-His252. The two EPR signals observed at g = 1.82 and g = 1.9 in the Fe(2+)Q(A)(-) state of PSII may be attributed to D1-His252 with variable and fixed protonation, respectively.  相似文献   

9.
The EPR and redox properties of the metal complexes in CO dehydrogenase (CODH) from Clostridium thermoaceticum were studied. Controlled potential coulometric reductive titrations of CODH were performed under argon and CO2 atmospheres. In the titrations performed under argon, five to eight electrons/dimer were required for reduction, and four distinct EPR signals appeared. These included a signal with gave = 1.82 (Em approximately -220 mV), two signals with the same g values but different linewidths at gave = 1.94 (Em approximately -440 mV), and a signal at gave = 1.86 (Em approximately -530 mV). All of the S = 1/2 EPR signals had low spin concentrations; values between 0.2 and 0.3 spins/dimer were typically obtained for each signal. Features between g = 6 and 4, typical of S = 3/2 states, were also observed, and these may account, at least to some degree, for the low spin concentration values. Under CO2, and at negative potentials, CODH served as an electrocatalyst in the reduction of CO2 to CO. The apparent half-maximal activity for this reduction at pH 6.3 occurred at -430 mV, a potential near the thermodynamic value. An EPR signal, arising from a complex containing Ni, Fe, and the carbon from CO/CO2 developed along with this activity. The reduction of this complex is probably the last step to occur prior to the catalysis of CO2 reduction.  相似文献   

10.
The dinitrogenase component proteins of the conventional Mo nitrogenase (MoFe protein) and of the alternative Fe-only nitrogenase (FeFe protein) were both isolated and purified from Rhodobacter capsulatus, redox-titrated according to the same procedures and subjected to an EPR spectroscopic comparison. In the course of an oxidative titration of the MoFe protein (Rc1Mo) three significant S = 1/2 EPR signals deriving from oxidized states of the P-cluster were detected: (1) a rhombic signal (g = 2.07, 1.96 and 1.83), which showed a bell-shaped redox curve with midpoint potentials (Em) of -195 mV (appearance) and -30 mV (disappearance), (2) an axial signal (g(parallel) = 2.00, g perpendicular = 1.90) with almost identical redox properties and (3) a second rhombic signal (g = 2.03, 2.00, 1.90) at higher redox potentials (> 100 mV). While the 'low-potential' rhombic signal and the axial signal have been both attributed to the one-electron-oxidized P-cluster (P1+) present in two conformationally different proteins, the 'high-potential' rhombic signal has been suggested rather to derive from the P3+ state. Upon oxidation, the FeFe protein (Rc1Fe) exhibited three significant S = 1/2 EPR signals as well. However, the Rc1Fe signals strongly deviated from the MoFe protein signals, suggesting that they cannot simply be assigned to different P-cluster states. (a) The most prominent feature is an unusually broad signal at g = 2.27 and 2.06, which proved to be fully reversible and to correlate with catalytic activity. The cluster giving rise to this signal appears to be involved in the transfer of two electrons. The midpoint potentials determined were: -80 mV (appearance) and 70 mV (disappearance). (b) Under weakly acidic conditions (pH 6.4) a slightly altered EPR signal occurred. It was characterized by a shift of the g values to 2.22 and 2.05 and by the appearance of an additional negative absorption-shaped peak at g = 1.86. (c) A very narrow rhombic EPR signal at g = 2.00, 1.98 and 1.96 appeared at positive redox potentials (Em = 80 mV, intensity maximum at 160 mV). Another novel S = 1/2 signal at g = 1.96, 1.92 and 1.77 was observed on further, enzymatic reduction of the dithionite-reduced state of Rc1Fe with the dinitrogenase reductase component (Rc2Fe) of the same enzyme system (turnover conditions in the presence of N2 and ATP). When the Rc1Mo protein was treated analogously, neither this 'turnover signal' nor any other S = 1/2 signal were detectable. All Rc1Fe-specific EPR signals detected are discussed and tentatively assigned with special consideration of the reference spectra obtained from Rc1Mo preparations.  相似文献   

11.
Bacteriophage lambda protein phosphatase (lambdaPP) with Mn(2+) as the activating metal cofactor was studied using phosphatase inhibition kinetics and electron paramagnetic resonance (EPR) spectroscopy. Orthophosphate and the oxoanion analogues orthovanadate, tungstate, molybdate, arsenate, and sulfate were shown to inhibit the phosphomonoesterase activity of lambdaPP, albeit with inhibition constants (K(i)) that range over 5 orders of magnitude. In addition, small organic anions were tested as inhibitors. Phosphonoacetohydroxamic acid (PhAH) was found to be a strong competitive inhibitor (K(i) = 5.1 +/- 1.6 microM) whereas phosphonoacetic acid (K(i) = 380 +/- 45 microM) and acetohydroxamic acid (K(i) > 75 mM) modestly inhibited lambdaPP. Low-temperature EPR spectra of Mn(2+)-reconstituted lambdaPP in the presence of oxoanions and PhAH demonstrate that inhibitor binding decreases the spin-coupling constant, J, compared to the native enzyme. This suggests a change in the bridging interaction between Mn(2+) ions of the dimer due to protonation or replacement of a bridging ligand. Inhibitor binding also induces several spectral shifts. Hyperfine splitting characteristic of a spin-coupled (Mn(2+))(2) dimer is most prominent upon the addition of orthovanadate (K(i) = 0.70 +/- 0.20 microM) and PhAH, indicating that these inhibitors tightly interact with the (Mn(2+))(2) form of lambdaPP. These EPR and inhibition kinetic results are discussed in the context of establishing a common mechanism for the hydrolysis of phosphate esters by lambdaPP and other serine/threonine protein phosphatases.  相似文献   

12.
The N5-methyltetrahydromethanopterin:coenzyme M methyltransferase is a membrane-bound cobalamin-containing protein of Methanosarcina mazei Gö1 that couples the methylation of coenzyme M by methyltetra-hydrosarcinopterin to the translocation of Na+ across the cell membrane (B. Becher, V. Müller, and G. Gottschalk, J. Bacteriol. 174:7656-7660, 1992). We have partially purified this enzyme and shown that, in addition to the cobamide, at least one iron-sulfur cluster is essential for the transmethylation reaction. The membrane fraction or the partly purified protein contains a "base-on" cobamide with a standard reduction potential (Eo') for the Co2+/1+ couple of -426 mV. The iron-sulfur cluster appears to be a [4Fe-4S]2+/1+ type with an Eo' value of -215 mV. We have determined the methyltransferase activity at various controlled redox potentials and demonstrated that the enzyme activity is activated by a one-electron reduction with half-maximum activity occurring at -235 mV in the presence of ATP and -450 mV in its absence. No activation was observed when ATP was replaced by other nucleoside triphosphates or nonhydrolyzable ATP analogs.  相似文献   

13.
The absorbance contributions of the FAD and Fe2S2 redox centres of component C of the soluble methane monooxygenase complex have been resolved, using mersalyl to destroy the Fe2S2 centre. The Fe2S2 seems to be very similar to that of spinach ferredoxin, by its absorbance and electron paramagnetic resonance (EPR) spectra, and the FAD semiquinone is a neutral semiquinone. Spectrophotometry near room temperature and EPR spectroscopy near liquid-helium temperature allow the three redox couples of component C to be ordered. Component C can exist in Oe-1 (oxidised), 1e-1 (semiquinone), 2e-1 (mostly semiquinone and reduced Fe2S2), and 3e-1 forms (dihydroquinone and reduced Fe2S2), under equilibrium conditions. The ability of component C to support odd-electron forms is consistent with its proposed role as a 2e-1/1e-1 transformase, splitting electron pairs from NADH for passage to component A in one-electron steps. (The FAD appears to interact with NADH, and transfers single electrons to the Fe2S2, for donation to component A at a constant redox potential.) The mid-point potentials of component C were found using redox dyes and EPR spectroscopy and were: FAD/FAD., Em = -150 mV; Fe2S2/Fe2.S2,Em = -220 mV; FAD./FAD..,Em = -260 mV. the presence of NADH did not alter these mid-point potentials. These mid-point potentials are consistent with the role of component C as the NADH:component A reductase, passing electrons from NADH (Em = -320 mV) onto component A (Em = +150 mV and Em = -150 mV). The reducing power from NADH appears to be required by component A to activate one atom of oxygen, to insert into methane, and the reducing equivalents derived from NADH end up with the other oxygen atom, as water.  相似文献   

14.
J Heo  C R Staples  P W Ludden 《Biochemistry》2001,40(25):7604-7611
Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum catalyzes both the oxidation of CO and the reduction of CO(2). Studies of the redox dependence of CO(2) reduction by R. rubrum CODH show that (1) CODH is unable to catalyze CO(2) reduction at potentials greater than -300 mV; (2) the maximum activity is observed at potentials less than -480 mV; and (3) the midpoint potential (E(m)) of the transition from minimum to maximum CO(2) reduction activity occurs at approximately -339 mV. These results indicate that the C(red1) state of R. rubrum CODH (E(m) = -110 mV; g(zyx)() = 2.03, 1.88, 1.71) is not competent to reduce CO(2). Nernst analyses suggest that the reduction of CODH from the C(red1) state to the CO(2)-reducing form (C(unc), g(zyx)() = 2.04, 1.93, 1.89; E < approximately -300 mV) of the enzyme is a one-electron process. For the entire redox range, viologens stimulate CO(2) reduction by CODH more than 50-fold, and it is proposed that viologens accelerate the redox equilibration of redox buffers and [Fe(4)S(4)](B) during catalysis.  相似文献   

15.
Escherichia coli NADPH-sulfite reductase can be dissociated into an oligomeric flavoprotein and a monomeric hemoprotein (HP) subunit in 4 M urea. HP catalyzes stoichiometric 6-electron reductions of SO32- (to S2-) and of NO2-, as well as 2-electron reduction of NH2OH, with reduced methyl viologen (MV+) as reductant. While Vmax values are highest with the nitrogenous substrates, Km for SO32- is 2 to 3 orders of magnitude less than the Km for NO2- or NH2OH. EPR spectroscopic and chemical analyses show that HP contains one siroheme and one Fe4S4 center per polypeptide. The heme is in the high spin Fe3+ state in HP as isolated. Near-quantitative reduction of the Fe4S4 center to a state yielding a g = 1.94 type of EPR spectrum by S2O42- and/or MV+ could be achieved if HP was converted to either the CN- or CO complex or treated with 80% dimethyl sulfoxide. HP binds one SO32- or CN- per peptide. Binding of these ligands, as well as CO, appears to be mutually exclusive and to involve the heme. The heme Fe3+/Fe2+ potential is shifted from -340 mV in the free HP to -155 mV in the HP-CN- complex. The potential of the Fe4S4 center is approximately 70 mV more negative in the CN- as opposed to the CO-ligated HP (-420 mV), a result which indicates the presence of heme-Fe4S4-ligand interaction in the HP complexes.  相似文献   

16.
R K Watt  R B Frankel  G D Watt 《Biochemistry》1992,31(40):9673-9679
Apo horse spleen ferritin undergoes a 6.3 +/- 0.5 electron redox reaction at -310 mV at pH 6.0-8.5 and 25 degrees C to form reduced apoferritin (apoMFred). Reconstituted ferritin containing up to 50 ferric ions undergoes reduction at the same potential, taking up one electron per ferric ion and six additional electrons by the protein. We propose that apo mammalian ferritin (apoMF) contains six redox centers that can be fully oxidized forming oxidized apoferritin (apoMFox) or fully reduced forming apoMFred. ApoMFred can be prepared conveniently by dithionite or methyl viologen reduction. ApoMFred is slowly oxidized by molecular oxygen but more rapidly by Fe(CN)6(3-) to apoMFox. Fe(III)-cytochrome c readily oxidizes apoMFred to apoMFox with a stoichiometry of 6 Fe(III)-cytochrome c per apoMFred, demonstrating a rapid interprotein electron-transfer reaction. Both redox states of apoMF react with added Fe3+ and Fe2+. Addition of eight Fe2+ to apoMFox under anaerobic conditions produced apoMFred and Fe3+, as evidenced by the presence of a strong g = 4.3 EPR signal. Subsequent addition of bipyridyl produced at least six Fe(bipyd)3(2+) per MF, establishing the reversibility of this internal electron-transfer process between the redox centers of apoMF and bound iron. Incubation of apoMFred with the Fe(3+)-ATP complex under anaerobic conditions resulted in the formation and binding of two Fe2+ and four Fe3+ by the protein. The various redox states formed by the binding of Fe2+ and Fe3+ to apoMFox and apoMFred are proposed and discussed. The yellow color of apoMF appears to be an integral characteristic of the apoMF and is possibly associated with its redox activity.  相似文献   

17.
The heme components of chlorosome-depleted membranes of the green-gliding bacterium Chloroflexus aurantiacus were studied by EPR spectroscopy. The four major species, which are present in approximately equimolar quantities, are characterized by the following gz values, redox midpoint potentials and orientations of heme planes with respect to the plane of the membrane: gz = 3.40, Em = +280 mV, 30 degrees; gz = 3.33, Em = 0 mV, 45 degrees; gz = 3.03, Em = +95 mV, 40-50 degrees and gz = 2.95, Em = +150 mV, 90 degrees. These four hemes were attributed to cytochrome c554, the membrane-bound immediate electron donor to the photosynthetic reaction centre in Chloroflexus. All hemes except that with the highest potential were able to undergo photooxidation at 4 K. The photooxidation of the lowest potential heme was stable, whereas that of the +95 mV and the +150 mV hemes reversed on increasing the temperature to 100 K in darkness, due to charge recombination. The ability to photooxidize these hemes at 4 K was lost upon aging of samples. The results demonstrate that a reaction-centre-associated tetraheme cytochrome subunit, analogous to that of purple bacteria, is also present in C. aurantiacus.  相似文献   

18.
Three soluble cytochromes were found in two strains of the halophilic non-sulfur purple bacterium Rhodospirillum salexigens. These are cytochromes C2, C and c-551. Cytochrome C2 was recognized by the presence of positive charge at the site of electron transfer (measured by laser flash photolysis), although the protein has an overall negative charge (pI = 4.7). Cytochrome C2 has a high redox potential (300 mV) and is monomeric (13 kDa). Cytochrome c was recognized from its characteristic absorption spectrum. It has a redox potential of 95 mV, an isoelectric point of 4.3, and is isolated as a dimer (33 kDa) of identical subunits (14 kDa), a property which is typical of this family of proteins. R. salexigens cytochrome c-551 has an absorption spectrum similar to the low redox potential Rb. sphaeroides cytochrome c-551.5. It also has a low redox potential (-170 mV), is very acidic (pI = 4.5), and is monomeric (9 kDa), apparently containing 1 heme per protein. The existence of abundant membrane-bound cytochromes c-558 and c-551 which are approximately half reduced by ascorbate and completely reduced by dithionite suggests the presence of a tetraheme reaction center cytochrome in R. salexigens, although reaction centers purified in a previous study (Wacker et al., Biochim. Biophys. Acta (1988) 933, 299-305) did not contain a cytochrome. The most interesting observation is that R. salexigens contains a photoactive yellow protein (PYP), previously observed only in the extremely halophilic purple sulfur bacterium Ectothiorhodospira halophila. The R. salexigens PYP appears to be slightly larger than that of Ec. halophila (16 kDa vs. 14 kDa). Otherwise, these two yellow proteins have similar absorption spectra, chromatographic properties and kinetics of photobleaching and recovery.  相似文献   

19.
M?ssbauer study of CO dehydrogenase from Clostridium thermoaceticum   总被引:2,自引:0,他引:2  
We have studied with M?ssbauer spectroscopy the metal clusters of CO dehydrogenase from Clostridium thermoaceticum. At potentials greater than -200 mV, all of the approximately 12 irons reside in diamagnetic environments and contribute a quadrupole doublet characteristic of [Fe4S4]2+ clusters. At lower potentials a variety of components are observed. About 40% of the Fe appears to belong to one [Fe4S4]1+ cluster. We have also observed the M?ssbauer spectrum (approximately 18% of Fe) of the complex which yields EPR with g = 2.01, 1.81, and 1.65. Also present is a doublet (9% of Fe) with delta EQ = 2.90 mm/s and delta = 0.70 mm/s, values typical of a ferrous FeS4 complex. This component seems to interact with a nickel site to form an EPR-silent complex with half-integral electronic spin. We have also characterized the iron environments of the S = 1/2 NiFeC complex. This complex contributes approximately 20% of the total M?ssbauer absorption when the EPR signal has approximately 0.35 spins/12 Fe. From isomer shift comparisons in the oxidized and CO-reacted states of this center, we speculate that the NiFeC complex may consist of a nickel site exchange-coupled to a [Fe4S4]2+ cluster. Finally, the M?ssbauer and EPR data, taken together, force us to conclude that current preparations, while homogeneous according to purifications standards, are spectroscopically heterogeneous, thus rendering the development of a model of the cluster types and compositions in this enzyme premature.  相似文献   

20.
Redox properties of cytochrome c553(550) from Desulfovibrio desulfuricans Norway (Eo' = 0.04 + 0.02 V/NHE) and cytochrome c551 from P. aeruginosa (Eo = 0.25 +/- 0.02 V/NHE) are compared with those of some monohemic c-type cytochromes. The pK value for the equilibrium between the pH-dependent forms of cytochrome c553(550) (pK = 10.3 +/- 0.1) has been also determined. It is to be noted that the difference between redox potentials can extend to nearly 250 mV, though the axial heme ligands are identical. Structural reasons have to be invoked to explain these variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号