首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wetland seed banks comprise the propagules of plant species that have species-specific germination requirements for germination in either flooded or dry conditions. At the community level, wetland structure and succession during and after a seasonal flooding event depends upon the early life-history requirements of species, including germination under flooded and dry conditions. We examined the effects of simulated flood and post-flood scenarios on seedling emergence from a seed bank of seasonally flooded grassland in the Pantanal, Brazil. Field samplings were conducted in both wet and dry seasons, both of which were subject to flood and post-flood conditions. A total of 70 species emerged from the seed bank, dominated by Poaceae and Cyperaceae. Sixteen species were exclusive to the wet and one exclusive to the dry season. The richness of perennial species was higher under flood conditions, while the richness of annuals was greater post-flood. In general, the aquatic and amphibious species exhibited a significant germination response to flooding. Terrestrial species only germinated in post-flood conditions, with higher richness in the dry season. Four species had high seedling abundance in both treatments. The capacity of regeneration by seeds is high in these grasslands and can be increased by seasonal flooding and drawdown. In these seasonally flooded grasslands, we observed three main germination strategies: under flooded conditions, aquatic and amphibious species; post-flood conditions, an explosion of annual amphibious and terrestrial species; and in moist soil, perennial terrestrial species. The differential responses to flooding versus post-flood conditions help to maintain the structure and species richness in the community over time.  相似文献   

2.
Abstract. The objective of this study was to investigate the effects of flooding and draw‐down on the germination from the coastal grassland seed banks and to determine whether the effect of flooding varies between the delta and the seashore. Seed bank samples were collected from three shore transects in SW Finland, two on the shore of the Baltic Sea and one on the delta of River Kokemäenjoki. Samples were germinated in non‐flooded and flooded conditions for over a month, after which both treatments were maintained in non‐flooded conditions. A total of 9267 seedlings of 47 species germinated and mean density of seeds in the soil was ca. 84 000/m2. Most of the seedlings were monocots (98%) and perennials (98%). Ca. 30–40% of the species found in the above‐ground vegetation had a seed bank including the majority of the most abundant species. The number of seeds and species richness increased as the organic layer became thicker. The organic layer was thicker in the seashore samples and the seed bank was significantly larger than in the delta. The flooding and draw‐down treatment significantly increased the number of germinating seedlings in the seashore and also increased species richness in two transects, one in the delta and the other in the seashore. Two species, Schoenoplectus tabernaemontani and Typha latifolia, had significantly higher germination in the flooded treatment than in the non‐flooded. Apparently, many species in these coastal grasslands have adapted to flood disturbance and for seeds of some species flooding may work as a positive signal, possibly breaking dormancy.  相似文献   

3.
The Pantanal is a large savanna wetland (138,183 km2 in Brazil), important for its wildlife, fed by tributaries of the upper Paraguay River, center of South America (Brazil, touching Bolivia and Paraguay). Uplands are plateaus (250-1,200 m high, 215,000 km2 in Brazil) and flatland is the Pantanal (80-150 m high, 147,574 km2 in Brazil). Rivers are slow moving when they meet the flatland (slope 0.3-0.5 m/km east-west; 0.03-0.15 m/km north-south), periodically overflowing their banks, creating a complex seasonal habitat range. Recurrent shallow flooding occupies 80% of the Pantanal; during the dry season flooded areas dry up. Fluctuating water levels, nutrients and wildlife form a dynamic ecosystem. A flooding regime forms distinct sub-regions within the Pantanal. A mammal survey was carried out in the sub-region of the Rio Negro from April, 2003 through March, 2004 to study the diversity and abundance of terrestrial mammals during the dry and flooding seasons. A total of 36 species were observed in the field. The capybara Hydrochaeris hydrochaeris was the most frequent species, followed by the crab-eating-fox Cerdocyon thous and the marsh deer Blastocerus dichotomus. The highest abundance of species was observed during the dry season (August and September), when there is a considerable expansion of terrestrial habitats, mainly seasonally flooded grassland. Animal abundance (in terms of observed individual frequencies) varied during the dry and wet seasons and the seasonally flooded grassland was the most utilized habitat by mammals in the dry season.  相似文献   

4.
Question : The formation of large woody debris (LWD) piles during floods has significant impacts on riparian succession through pioneering plants often establishing in association with wood. We assess the importance of LWD for seed regeneration of riparian plants after a century‐scale flood disturbance in a semi‐arid environment. Location : The Sabie River within Kruger National Park in the semi‐arid northeast of South Africa. Methods : Our approach was to quantify the riparian soil seed bank, to record the frequency of establishment of riparian plants in woody debris piles, and to conduct experimental out‐plantings of common riparian trees in plots with and without LWD. Results : We found the abundance and diversity of seedlings were higher in soils taken from wood piles than from open reference areas, and most seedlings were herbaceous species. Surveys indicated that numbers of seedlings recorded within woody debris were significantly greater than in open reference areas or within established vegetation. Seedling establishment in various cover‐types also varied for different riparian tree species. Experimental out‐planting of seedlings of two riparian tree species (Philenoptera violacea and Combretum erythrophyllum) revealed that, after 433 days, planted seedlings survived only in woody debris piles. Conclusion : LWD formed after a large flood creates heterogeneous patches that may influence post‐disturbance regeneration of riparian vegetation by providing a variety of environmental niches for seedlings establishment. We suspect that higher seedling survival in LWD is due to increased moisture (particularly in the dry season) and nutrients, and protection from seasonal flooding and herbivory.  相似文献   

5.
Litter-nesting ants are diverse and abundant in tropical forests, but the factors structuring their communities are poorly known. Here we present results of the first study to examine the impact of natural variation in flooding on a highly diverse (21 genera, 77 species) litter-nesting ant community in a primary Amazonian forest. Fifty-six 3 × 3 m plots experiencing strong variation in flooding and twenty-eight 3 × 3 m terra firme plots were exhaustively searched for litter-nesting ants to determine patterns of density, species richness and species composition. In each plot, flooding, litter depth, twig availability, canopy cover, plant density, percent soil nitrogen, carbon, and phosphorus were measured. Degree of flooding, measured as flood frequency and flood interval, had the strongest impact on ant density in flooded forest. Flooding caused a linear decrease in ant abundance, potentially due to a reduction of suitable nesting sites. However, its influence on species richness varied: low-disturbance habitat had species richness equal to terra firme forest after adjusting for differences in density. The composition of ant genera and species varied among flood categories; some groups known to contain specialist predators were particularly intolerant to flooding. Hypoponera STD10 appeared to be well-adapted to highly flooded habitat. Although flooding did not appear to increase species richness or abundance at the habitat scale, low-flooding habitat contained a mixture of species found in the significantly distinct ant communities of terra firme and highly flooded habitat.
  相似文献   

6.
We sampled butterflies in six different habitat types in and around Katavi National Park, a remote reserve consisting primarily of miombo woodland and seasonal lakes in western Tanzania. Blendon traps set for 531 trap days and 143 h of butterfly netting at 35 sites yielded 186 species from five families over a 4‐month period during the wet season. Eight of these species constituted possible range extensions. Butterfly abundance and species richness were low in cultivated habitats but high in open riverine habitats; many butterfly species were found only in seasonally flooded grassland. This study constitutes the first butterfly species inventory from this poorly‐known national park, shows that protection of dry season water sources provides an important conservation service for invertebrates as well as large mammals, and that increased cultivation outside miombo parks can reduce local butterfly diversity.  相似文献   

7.
In order to reduce flood risk, river management policies advise floodplain restoration and the recreation of water retention areas. These measures may also offer opportunities for the restoration of species-rich floodplain habitats through rewetting and the restoration of flood dynamics. The potential to enhance biodiversity in such flood restoration areas is, however, still subject to debate. In this paper we investigate whether flooding along a small altered lowland river can contribute to the potential and realised species richness of semi-natural meadows. We compare the seed bank and vegetation composition of flooded and non-flooded semi-natural meadows and test the hypothesis that flooding contributes to an input of diaspores into the meadow seed banks, thereby promoting seed density and potential species richness. Furthermore we hypothesise that, where habitat conditions are suitable, flooding leads to a higher realised species richness. Results showed that seed densities in flooded meadows were significantly higher than in non-flooded meadows. The seed banks of flooded meadows also contained a higher proportion of exclusively hydrochorous species. However, the seed bank species richness, as well as the species richness realised in the vegetation did not differ significantly between flooded and non-flooded meadows. Finally, the seed bank and standing vegetation of flooded sites showed larger differences in species composition and Ellenberg nitrogen distribution than non-flooded sites. From these results we conclude that, although flooding does contribute to the density and composition of the seed bank, most imported seeds belong to only a few species. Therefore, it is unlikely that flooding substantially enhances the potential species richness. Furthermore, even if new species are imported as seeds into the seed bank, it seems unlikely that they would be able to establish in the standing vegetation. However, it is unclear which factors impede the establishment of imported species in the vegetation. The implications of our findings for flood meadow restoration are discussed.  相似文献   

8.
In many temporary wetlands such as those on the Northern Tablelands of New South Wales Australia, the development of plant communities is largely the result of germination and establishment from a long-lived, dormant seed bank, and vegetative propagules that survive drought. In these wetlands the pattern of plant zonation can differ from year to year and season to season, and depth is not always a good indicator of the plant community composition in different zones. In order to determine which aspects of water regime (depth, duration or frequency of flooding) were important in the development of plant communities an experiment using seed bank material from two wetlands was undertaken over a 16 week period in late spring–early summer 1995–1996. Seed bank samples were exposed to 17 different water-level treatments with different depths, durations and frequencies of flooding. Species richness and biomass of the communities that established from the seed bank were assessed at the end of the experiment and the data were examined to determine which aspects of water regime were important in the development of the different communities. It was found that depth, duration and frequency of inundation influenced plant community composition, but depth was least important, and also that the duration of individual flooding events was important in segregating the plant communities. Species were grouped according to their ability to tolerate or respond to fluctuations in flooding and drying. The highest biomass and species richness developed in pots that were never flooded. Least biomass and species richness developed in pots that were continuously flooded. Short frequent floods promoted high species richness and biomass especially of Amphibious fluctuation-tolerator species and Amphibious fluctuation-responder species that have heterophylly. Terrestrial species were able to establish during dry phases between short floods. Depth was important in determining whether Amphibious fluctuation-tolerator or Amphibious fluctuation-responder species had greater biomass. Longer durations of flooding lowered species richness and the biomass of terrestrial species. Experiments of this kind can assist in predicting vegetation response to water-level variation in natural and modified wetlands.  相似文献   

9.
Adjacent floodplain and upland tropical forests experience the same temperature and precipitation regimes, but differ substantially in plant species composition and biotic interactions because of extensive flooding. We hypothesize that flooded forests filter fruiting traits linked to seed dispersal by water and fishes, such that selection by water and fish led to (1) trees that synchronize the timing of fruiting with annual floods, and (2) the evolution of fleshy tissues on fruits to improve buoyancy and increase fruit consumption rates by fish. To test this hypothesis, we compared plant communities in seasonally flooded forests and adjacent upland forest in terms of fruiting phenology, the frequency of trees bearing fleshy fruit, and the role of fleshy tissues in buoyancy and seed viability. Beta‐diversity in this system is high, with significant differences in species composition across habitats. As predicted, the production of ripe fleshy fruits was significantly greater in flooded than upland forests during the flood season. Furthermore, we found that trees with fleshy fruit were significantly more abundant in flooded forests even though species richness of fleshy fruit‐bearing trees was proportionally similar in flooded and upland forests. Additionally, fleshy pulp increased buoyancy. Likewise, time afloat decreased for denser fruit and those with high seed to pulp ratios. In concert, these results suggest that fleshy fruits in Neotropical floodplain forests facilitated hydrochory and ichthyochory. Once established, water and fish became important agents of selection on fruiting traits.  相似文献   

10.
Lopez OR  Kursar TA 《Oecologia》2007,154(1):35-43
Flood tolerance is commonly regarded as the main factor explaining low diversity and monodominance in tropical swamps. In this study we examined seedling mortality in relation to seasonality, i.e., flooding versus drought, of the dominant tree species (Prioria copaifera), and three associated species (Pterocarpus officinalis, Carapa guianensis and Pentaclethra macroloba), in seasonally flooded forests (SFF) in Darien, Panama. Seedling mortality differed among species, years and seasons. Prioria seedlings experienced the lowest overall mortality, and after 3 years many more Prioria seedlings remained alive than those of any of the associated species. In general, within species, larger seedlings had greater survival. Seed size, which can vary by close to 2 orders of magnitude in Prioria, had a confounding effect with that of topography. Large-seeded Prioria seedlings experienced 1.5 times greater mortality than small-seeded seedlings, as large-seeded Prioria seedlings were more likely to be located in depressions. This finding suggests that seed size, plant size and topography are important in understanding SFF regeneration. For all species, seedling mortality was consistently greater during the dry season than during flooding. For Prioria, dry season seedling mortality was correlated with drought stress, that is, high mortality during the long El Niño dry season of 1998 and the normal dry season of 2000, but very low dry season mortality during the mild dry season of 1999. Prioria’s ability to dominate in seasonally flooded forest of Central America is partly explained by its low drought-related mortality in comparison to associated species.  相似文献   

11.
1. We compared assemblages of ground‐active, terrestrial beetles and spiders from different areas of river red gum Eucalyptus camaldulensis floodplain forest in subhumid, south‐eastern Australia before and for 2 years following a managed flood to determine whether the Flood Pulse Concept is an appropriate ecological model for this regulated, lowland river‐floodplain system. 2. Immediately following flooding, the abundance, species richness and biomass of beetles were greatest at sites that had been inundated for the longest period (approximately 4 months). The abundance, species richness and biomass of spiders were not reduced at sites that were flooded for 4 months compared with unflooded or briefly flooded areas. Sites recently flooded for several months had high densities of predatory, hygrophilic beetles (Carabidae) and spiders (Lycosidae). 3. Over the 2 years following the flood, beetles generally were more abundant at sites that had been inundated for longer. At all sampling times, the species richness of beetles at sites increased with the length of time sites were inundated, even before the flood. Neither the abundance nor species richness of spiders was related to duration of flooding. 4. The structure of beetle and spider assemblages at sites that were flooded for different lengths of time did not appear to converge monotonically over the 2 years after the flood. 5. Managed flooding promotes diversity of beetles and spiders both by providing conditions that create a ‘pulse’ in populations of hygrophilic specialists in the short term, and by creating subtle, persistent changes in forest‐floor conditions. Despite its monotypic canopy, river red gum floodplain forest is a habitat mosaic generated by differing inundation histories.  相似文献   

12.
1. This paper explores soil seed bank composition and its contribution to the vegetation dynamics of a hydrologically variable desert floodplain in central Australia: the Cooper Creek floodplain. We investigated patterns in soil seed bank composition both temporally, in response to flooding (and drying), and spatially, with relation to flood frequency. Correlations between extant vegetation and soil seed bank composition are explored with respect to flooding. 2. A large and diverse germinable soil seed bank was detected comprising predominantly annual monocot and annual forb species. Soil seed bank composition did not change significantly in response to a major flood event but some spatial patterns were detected along a broad flood frequency gradient. Soil seed bank samples from frequently flooded sites had higher total germinable seed abundance and a greater abundance of annual monocots than less frequently flooded sites. In contrast, germinable seeds of perennial species belonging to the Poaceae family were most abundant in soil seed bank samples from rarely flooded sites. 3. Similarity between the composition of the soil seed bank and extant vegetation increased following flooding and was greatest in more frequently flooded areas of the floodplain, reflecting the establishment of annual species. The results indicate that persistent soil seed banks enable vegetation in this arid floodplain to respond to unpredictable patterns of flooding and drying.  相似文献   

13.
Sea level rise may alter salinity and inundation regimes and create patches of open water in oligohaline coastal marshes, potentially affecting the composition and germination of seed bank species. We conducted seedling emergence experiments to: (1) examine the effects of standing vegetation on the seed banks of three oligohaline marsh communities in coastal Louisiana (dominated by Paspalum vaginatum Sw., Sagittaria lancifolia L., or Spartina patens (Ait.) Muhl., respectively); and (2) investigate the effects of salinity and inundation regime on germination of seed bank species. We also studied the effect of a temporary increase in salinity (to simulate a salt water intrusion event) on the viability of buried seeds. We found that the presence or absence of vegetation within a community affected the abundance of some species in the seed bank but had little effect on species composition. Also, the seed banks of the three communities exhibited considerable overlap in species composition and had similar species richness (10–11) and diversity (antilog Shannon-Weaver diversity index = 6.5–7.1), despite differences in vegetation type. Higher salinities and flooding reduced seedling emergence for most species; few species emerged at salinities above four parts per thousand (ppt), and only Sagittaria lancifolia and Eleocharis parvula germinated well under flooded conditions. A temporary increase in salinity did not affect species richness or seedling emergence of most species. Our results suggest that differences in vegetation may have little effect on the composition of seed banks of oligohaline marshes. However, higher salinities and greater depth and duration of inundation (anticipated as global sea level continues to rise) may decrease recruitment of seed bank species, reducing their abundance in oligohaline marsh communities.  相似文献   

14.
亚热带大型水库—新丰江水库的浮游生物群落特征   总被引:8,自引:0,他引:8  
于2000年丰水期和枯水期,调查了新丰江水库的浮游生物群落结构。新丰江水库处于贫营养状态,浮游生物密度和生物量均较低。浮游植物34种,丰水期以蓝、绿藻为主,分别占总数量的31.7%和26.8%,蓝藻、绿藻细胞微小,chl-a量未占优势;枯水期硅藻为优势种群,占63.9%。浮游动物22种,丰水期轮虫为主,占65.3%,枯水期桡足类占81%,丰水期动物密度较高,但丰水期以轮虫如螺形龟甲轮虫为主,枯水期以无节幼体、桡足幼体及广布中剑水蚤居多,因此枯水期生物量高于丰水期。  相似文献   

15.
Abstract. We assessed the significance of flooding for the floristic composition of seed banks in flood‐meadows of the northern valley of the Upper Rhine. We compared three hydrological compartments of the alluvial plain, consisting of the regularly flooded land between the river and low summer dykes (functional flood‐plain), the occasionally flooded land between summer dykes and high winter dykes (hybrid floodplain) and the land behind the winter dykes, which is now only submerged by ascending groundwater (fossil flood‐plain). Due to their different flooding regime, the three compartments should differ with respect to the prevailing conditions of diaspore input. The seed density of soil samples increased with the duration of flooding in the three compartments, while species richness and the proportion of species not occurring in the vegetation was constant. The increase in seed density can be largely attributed to an increase of disturbance indicators, which are present in the above‐ground vegetation and capable of forming a long‐term persistent seed bank. No effects of flooding on the composition of seed banks in the three flood‐plain compartments were found. The differences in seed bank composition can be largely explained by corresponding differences in above‐ground vegetation and former and present‐day meadow management. Seeds of species absent from above‐ground vegetation can be attributed to the local species pool present in the immediate vicinity of the study plots. We discuss consequences of the results for the restoration of species‐rich flood‐plain meadows.  相似文献   

16.
de Roa Zoppi  Evelyn 《Hydrobiologia》1994,292(1):429-435
A 14 year monitoring of species composition and abundance of cyclopoid copepods throughout the rainy and dry seasons in a flooded savanna at Mantecal, Apure State, Venezuela, is presented. Two characteristic habitats within these water bodies were selected: the open center of small ponds free of emergent vegetation and the surrounding flooded grassland. In total, 13 species were registered, all of which appeared in the flooded grassland and 11 of which occurred in the open water. Ten species were common for the two habitats during the dry season. The highest abundance was found in flooded grassland during the dry season. Eight species showed abundances greater than 1.0 individual per liter in flooded grassland during both seasons; 3 and 7 species were this abundant in the open water during rainy and dry seasons, respectively. Mesocyclops meridianus and Microcyclops varicans were the most abundant species in both habitats and seasons, while Thermocyclops decipiens was the dominant species during rainy season in open water. Principal component analysis indicates that the important species were positively correlated between them (sharing habitat and season).  相似文献   

17.

Questions

The degree to which renosterveld shrublands are fire‐dependent is currently unclear. To address this issue, the following questions were asked: (1) does smoke stimulate germination of soil‐stored seeds in renosterveld; (2) does recently‐burned renosterveld display changed composition and higher diversity than unburned vegetation; and (3) how do the species compositions of renosterveld soil seed banks and standing vegetation compare?

Location

Swartland, Cape Floristic Region, South Africa.

Methods

Soil seed bank samples from a north‐ and south‐facing slope were smoke‐treated and germinated to test for smoke‐stimulated germination. Burned standing vegetation was surveyed 16 months post‐fire, as was unburned vegetation on the same slopes. Seed bank species richness and density were compared between smoke‐treated and untreated samples within and between slopes. Burned and unburned standing vegetation were compared within and between slopes in terms of species richness, abundance and aerial cover. Compositional similarity of the seed banks and standing vegetation was assessed.

Results

Seed banks were dominated by annuals and graminoids. Smoke treatment had no effect, except for driving significantly higher species richness and seedling density in south‐facing slope perennial shrubs. Species richness and seedling density were significantly higher in seed banks on the south‐facing slope compared to the north‐facing slope. Burned standing vegetation exhibited significantly higher diversity than unburned vegetation. Annuals and graminoids displayed significantly higher species richness and aerial cover in burned renosterveld. The north‐facing slope contained less than half the number of species/m2 compared to the south‐facing slope. The seed banks and standing vegetation showed low to intermediate similarity (Sørensen = 31%–53%), but grouped close together on an NMDS plot, suggesting intermediate similarity overall.

Conclusions

Elevated germination of perennial shrubs in smoke‐treated seed bank samples and increased diversity of post‐fire standing vegetation suggest the renosterveld in this study shows elements of a fire‐driven system. Certain species only recruited in burned sites, suggesting fire‐stimulated germination. Aspect had a major influence on plant community composition, with the mesic south‐facing slope being more diverse than the xeric north‐facing slope. The similarity between the seed banks and standing vegetation was higher than previously shown for renosterveld, and appears to be higher than for fynbos.  相似文献   

18.
Middleton  Beth 《Plant Ecology》2000,146(2):167-181
Following the environmental sieve concept, the setting in which the recruitment of Taxodium distichum occurs in, becomes increasingly restrictive from the seed to seedling stage in an impounded forested wetland. Although a wide elevational band of dispersing seed moves across the boundary of a swamp-field in the water sheet, the zone of germination is relegated to that portion of the forested wetland that draws down during the growing season. Seedling recruitment is further restricted to the uppermost zone of the winter water sheet. These patterns are likely applicable to other species of dominant swamp species, e.g., Cephalanthus occidentalis crossed the boundary of a forested wetland and abandonded field in winter flooding (November–December and November–March, respectively) in Buttonland Swamp. The elevation of the boundary was 101.3 m NGVD. While the seeds of at least 40 swamp species were dispersed across the boundary, few viable seeds were dispersed after the winter season. Kriged maps showed seeds of T. distichum and C. occidentalis dispersed in patches in the water depending on the position of the water sheet. Most species of both water- and gravity-dispersed species had a localized pattern of seed distribution (either spherical or exponential) and this indicated that seeds may not be dispersed for great distances in the swamp. Water-dispersed T. distichum and C. occidentalis had larger dispersal ranges (A 0=225 and 195 m, respectively) than Bidens frondosa and B. discoidea (A 0=14 and 16 m, respectively). Seed dispersal varied with season depending on the availability of seeds. In Buttonland Swamp, viable seeds typically were dispersed for T. distichum in November–June, and for C. occidentalis in November-July. Low water occurred in August 1993 and high in February 1994 (99.8 and 101.6 m NGVD, respectively). The seed banks along the landscape boundary varied in species composition according to elevation (r 2 = 0.996). While the similarity of species richness between water-dispersed seeds and the seed bank at elevations that flooded (during June 1993 through May 1995) was high (10–17%), it was low between water-dispersed seeds and the seed bank at elevations that did not flood (5%). T. distichum seeds had a short germination window in that seeds germinated within a year following their production in zones that were flooded in the winter followed by drawdown during the next growing season. After 1 year, less than 5% of the T. distichum seeds remained viable on the surface of the soil. Germination of T. distichum was confined to specific elevations (above 99.3 but below 101.6 m NGVD) during this study with 4.1% of the seedlings surviving for more than 2 years at a mean of 101.4 m NGVD. All seedlings below this elevation died. To maximize natural regeneration along the boundaries of swamps in abandoned farm fields targeted for restoration, this study suggests a flood pulse regime consisting of high water in the winter to maximize dispersal of live seeds followed by low water in the summer to facilitate seed germination and seedling recruitment. Hydrologic restoration could assist in the natural recovery of damaged wetlands if a seed source exists nearby.  相似文献   

19.
Seed germination and seedling establishment play an important role in driving the responses of plant community structure and function to global change. Nitrogen (N) deposition is one of the driving factors of global change, which often leads to a loss in species richness in grassland ecosystems. However, how seed germination responds to N addition remains unclear. A pot incubation test was conducted in a semi‐arid grassland in the Mongolian Plateau, Northern China, to investigate the effect of N addition (0, 5, 10, 20, 40, and 80 g N/m2) on seed germination from May to October 2016. Twenty species germinated under all treatments; however, the responses of the 20 species to N addition were different. The densities of Stipa krylovii, Leymus chinensis, and Artemisia frigida, which are the dominant species in this temperate steppe, decreased significantly as the amount of N addition. Moreover, N addition significantly suppressed seedling densities of the community, perennial forbs, perennial grasses, and annuals and biennials. Furthermore, species richness of the community, perennial forbs, and annuals and biennials decreased sharply with increasing N addition level, but perennial grass species richness did not change. The Shannon–Wiener diversity index also decreased as the amount of N addition increased. Our results suggest that N enrichment plays an important role in the seed germination stage and decreases supplements of seedlings to adult plants. These findings may help explain the causes of species loss by atmospheric N deposition in grassland ecosystems.  相似文献   

20.
Disturbance alters the structure and dynamics of communities. Here, we examined the effects of seasonal flooding on the lizard community structure by comparing two adjacent habitats, a seasonally flooded and a non‐flooded forest, in a Cerrado–Amazon ecotone area, the Cantão State Park, Tocantins state, Brazil. Despite the strong potential impact of seasonal flooding, the only significant environmental difference detected was more termite mounds in non‐flooded forests. Species richness was significantly higher in the non‐flooded forest. Colobosaura modesta, followed by Mabuya frenata and Anolis brasiliensis, were the only species that differed in number of captures between sites. Colobosaura modesta was exclusively found in the non‐flooded forest, while Anolis brasiliensis was the most captured in the flooded forest. Mabuya frenata is indicated as an indicator species in the flooded forest, and Colobosaura modesta in the non‐flooded forest. We found a significant association between lizard abundances and habitat characteristics, with flooding, canopy cover, and logs being the best predictors. A phylogenetic community structure analysis indicated a lack of structure in both lizard assemblages. Overall, we show that seasonal flooding can strongly impact species richness and species occurrence patterns, but not phylogenetic community structure. The Amazon–Cerrado transition is undergoing pronounced transformations due to deforestation and climate change. Despite being species‐poor compared with central areas in Amazon or Cerrado, this ecotone harbors species with important adaptations that could hold the key to persistence in human‐disturbed landscapes or during periods of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号