首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
1. North American freshwater mussels have been subjected to multiple stressors in recent decades that have contributed to declines in the status and distribution of many species. However, considerable uncertainty exists regarding the relative influence of these factors on observed population declines. 2. We used an occupancy modelling approach to quantify relationships between mussel species occurrence and various site‐ and catchment‐level factors, including land cover, stream size, the occurrence of drought and reach isolation due to impoundment for 21 mussel species native to the lower Flint River Basin, Georgia, U.S.A. 3. Our modelling approach accounted for potential biases associated with both incomplete detection and misidentification of species, which are frequently not accommodated as sources of bias in freshwater mussel studies. 4. Modelling results suggested that mussel species were, on average, four times less likely to be present following severe drought, but the negative effects of drought declined rapidly with increasing stream size. Similarly, mussel species were 15 times less likely to occupy small streams that were isolated from mainstem tributaries by impoundments. 5. This study provides insight into the effects of natural and anthropogenic factors on freshwater mussel species. Our findings add to a growing body of literature aimed at improving understanding of the predominant factors influencing freshwater mussel populations and fostering the development of more informed and effective conservation strategies.  相似文献   

2.
3.
4.
5.
A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR‐based analyses of low‐concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty—indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics.  相似文献   

6.
Knowledge of threatened species’ distributions is essential for effective conservation decision‐making. Species distribution models (SDMs) are widely used to map species’ geographic ranges, identify new areas of suitable habitat and guide field surveys. In New South Wales (NSW), Australia, there are grave doubts about whether populations of the critically endangered long‐footed potoroo (Potorous longipes) remain extant, and identification of occupied sites is a high priority for its conservation. We used an SDM (Maxent) to identify regions in NSW that may have suitable habitat for the potoroo. The SDM was built with seven climate layers and had strong predictive performance (cross‐validated AUC = 0.94). We then combined this information on habitat suitability with vegetation and topography, to identify 58 survey sites across NSW. From April 2016 to May 2017, we undertook six field trips deploying six to eight cameras at each site for 52–63 days, resulting in 25 120 camera trap nights. A total of 215 759 images captured 43 native and feral animal species, but no long‐footed potoroos. Following the survey, newly available, independent presence and absence data were used to validate our model. A Kruskal–Wallis H test indicated that habitat suitability values were significantly higher at presence locations than absence locations (H = 58.66, d.f. = 1, P < 0.001). Finally, we refitted the Maxent model with the new data and identified additional regions that future surveys could explore. We conclude, however, that if the long‐footed potoroo remains extant in NSW, it is extremely rare.  相似文献   

7.
8.
9.
Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested modelling framework significantly improves the model's performance and that the spatial variations of species presence-absence and abundances are predominantly explained by different factors. We also show that incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding of community assembly. This approach, at the crossroads between community ecology and biogeography, is a promising avenue for a better understanding of species co-existence and biodiversity distribution.  相似文献   

10.
11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号