首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Assessing species phenology provides useful understanding about their autecology, to contribute to management strategies. We monitored reproductive phenology of Mimusops andongensis and Mimusops kummel, and its relationship with climate, tree diameter and canopy position. We sampled trees in six diameter classes and noted their canopy position. For both species flowering began in the dry season through to the rainy season, but peaked in the dry season, whilst fruiting occurred in the rainy season and peaked during the most humid period. Flowering was positively correlated with temperature. Conversely, fruiting was negatively correlated with temperature and positively with rainfall, only in the Guineo‐Sudanian zone. For Mandongensis, flowering and fruiting prevalences were positively linked to stem diameter, while only flowering was significantly related to canopy position. For Mkummel, the relationship with stem diameter was significant for flowering prevalence only and in the Guineo‐Sudanian zone. Results suggest that phylogenetic membership is an important factor restricting Mimusops species phenology. Flowering and fruiting of both species are influenced by climate, and consequently climate change might shift their phenological patterns. Long‐term investigations, considering flowering and fruiting abortion, will help to better understand the species phenology and perhaps predict demographic dynamics.  相似文献   

2.
Despite the important contribution of fungi to forest health, biomass turnover and carbon cycling, little is known about the factors that influence fungal phenology. Therefore, in order to further our understanding on how macrofungal fruiting patterns change along a gradient from temperate to tropical climate zones, we investigated the phenological patterns of macrofungal fruiting at five sites along a combined altitudinal and latitudinal gradient in SW China and NW Laos, ranging from temperate to tropical climates. Observations were conducted in the dominant land use types at these study sites: mixed forest (all sites), coniferous forest (temperate sites) and grassland (temperate sites). In total, 2866 specimens were collected, belonging to 791 morpho species, 162 genera, and 71 families. At the site level, the fruiting of ectomycorrhizal (EcMF) and saprotrophic fungi (SapF) occurred at the same time among all land use types. The fruiting season of fungi in the tropical sites began earlier and ended later compared to that of fungi in the temperate sites, which we attribute mainly to the higher temperature and more abundant rainfall of the tropical areas. EcMF taxa richness in temperate forests (both coniferous and mixed forest) showed a distinct peak at the end of the rainy season in August and September, while no significant peak was observed for SapF taxa richness. Neither functional fungal groups showed significant seasonal fluctuations in tropical areas. The temporal turnover of fungal fruiting significantly increased with the shift from tropical to temperate forests along the elevation gradient. In the grasslands, macrofungal abundance was less than 22% of that of corresponding forest sites, and taxa richness was 42% of that of corresponding forest sites. Fungal fruiting showed no significant fluctuations across the rainy season. This work represents a case study carried out over one year, and further measurements will be needed to test if these results hold true in the longer term.  相似文献   

3.
Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community-level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best-fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koa and Metrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community-level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.  相似文献   

4.
Reproductive patterns of tropical and temperate plants are usually associated with climatic seasonality, such as rainfall or temperature, and with their phylogeny. It is still unclear, however, whether plant reproductive phenology is influenced by climatic factors and/or phylogeny in aseasonal subtropical regions. The plant reproductive phenology of a subtropical rain forest in northern Taiwan (24°45′ N, 121°35′ E) was monitored at weekly intervals during a 7‐yr period (2002–2009). The flowering patterns of 46 taxa and fruiting patterns of 26 taxa were examined and evaluated in relation to climatic seasonality, phylogenetic constraints, and different phenophases. Our results indicated that most of the studied species reproduced annually. Additionally, both community‐wide flowering and fruiting patterns exhibited distinct annual rhythms and varied little among years. The community flowering peak matched seasonal changes in day length, temperature, and irradiance; while the community fruiting peak coincided with an increase in bird richness and the diet‐switching of resident omnivorous birds. In addition, phylogenetically closely related species tended to reproduce during the same periods of a year. Neither the mean flowering dates nor seasonal variation in solar radiation, however, was related to the fruit development times. Our results indicate the importance of abiotic, biotic, and evolutionary factors in determining the reproductive phenology in this subtropical forest.  相似文献   

5.
Tropical dry forests occupy more area and are more endangered than rainforests, yet their regeneration ecology has received less study and is consequently poorly understood. We recorded the flowering and fruiting phenology of a tropical dry forest in Jamaica over a period of 26 mo within ten 15 × 15‐m plots. Community‐wide recruitment reached a maximum in the wet season, whereas no recruitment occurred during the dry season. We observed a unimodal peak in rainfall and fruit production, and the periodicity and intensity of seed production were significantly correlated with rainfall seasonality (the optimal time for germination). Flowering at the community and system levels lagged behind a significant increase and subsequent decrease in rainfall by 7 and 3 mo, respectively, indicating that the dominant factor controlling flowering periodicity is the passage of the major (4‐mo long) rainy season and changes in soil moisture conditions. Fruiting lagged behind flowering by 2 mo and a significant increase in fruiting occurred 2 mo prior to a significant increase in rainfall. At the population level, a correspondence analysis identified a major dichotomy in the patterns of flowering and fruiting between species and indicated two broad species groups based on their time of peak fruiting and the number of times they were in fruit. These were either individuals which were usually in peak fruit 1–2 mo prior to the start of the major rainy season or those that were in fruit more or less continuously throughout the year with no peak fruiting time. This study supports the view that seasonal variation in rainfall and hence soil water availability constitutes both the proximate and the ultimate cause of flowering periodicity in tropical dry forests.  相似文献   

6.
The reproductive phenology of seven species of Rubiaceae from the Brazilian Atlantic rain forest was compared to evaluate the occurrence of phylogenetic constraints on flowering and fruiting phenologies. Since phenological patterns can be affected by phylogenetic constraints, we expected that reproductive phenology would be similar among plants within a family or genus, occurring during the same time (or season) of the year. Observations on flowering and fruiting phenology were carried out monthly, from December 1996 to January 1998, at Núcleo Picinguaba, Parque Estadual da Serra do Mar, Ubatuba, S?o Paulo State, Brazil. Nine phenological variables were calculated to characterize, quantify and compare the reproductive phenology of the Rubiaceae species. The flowering patterns were different among the seven species studied, and the Kruskal-Wallis test indicated significant differences in flowering duration first flowering, peak flowering and flowering synchrony. The peaks and patterns of fruiting intensity were different among the Rubiaceae species studied and they differed significantly from conspecifics in the phenological variables fruiting duration, fruiting peak date, and fruiting synchrony (Kruskal-Wallis test). Therefore, we found no evidence supporting the phylogenetic hypotheses, and climate does not seem to constrain flowering and fruiting patterns of the Rubiaceae species in the understory of the Atlantic forest.  相似文献   

7.
The reproductive phenology of 60 understorey species was monitored at monthly intervals for 20 months in a medium elevation wet evergreen forest in the Southern Western Ghats. The life forms monitored were herbs (including terrestrial orchids), shrubs and small trees. Flowering and fruiting were non‐uniform with a dry season flowering peak and wet season fruiting peak. Flowering in the understorey correlated negatively with rainfall. No significant correlation was detected for fruiting. Life forms had flowering and fruiting peaks at different times of the year.  相似文献   

8.
Fruiting, flowering, and leaf set patterns influence many aspects of tropical forest communities, but there are few long‐term studies examining potential drivers of these patterns, particularly in Africa. We evaluated a 15‐year dataset of tree phenology in Kibale National Park, Uganda, to identify abiotic predictors of fruit phenological patterns and discuss our findings in light of climate change. We quantified fruiting for 326 trees from 43 species and evaluated these patterns in relation to solar radiance, rainfall, and monthly temperature. We used time‐lagged variables based on seasonality in linear regression models to assess the effect of abiotic variables on the proportion of fruiting trees. Annual fruiting varied over 3.8‐fold, and inter‐annual variation in fruiting is associated with the extent of fruiting in the peak period, not variation in time of fruit set. While temperature and rainfall showed positive effects on fruiting, solar radiance in the two‐year period encompassing a given year and the previous year was the strongest predictor of fruiting. As solar irradiance was the strongest predictor of fruiting, the projected increase in rainfall associated with climate change, and coincident increase in cloud cover suggest that climate change will lead to a decrease in fruiting. ENSO in the prior 24‐month period was also significantly associated with annual ripe fruit production, and ENSO is also affected by climate change. Predicting changes in phenology demands understanding inter‐annual variation in fruit dynamics in light of potential abiotic drivers, patterns that will only emerge with long‐term data.  相似文献   

9.
We examined structural and physiological traits relevant to the phenology of the tropical dry forest (TDF) pioneer tree Cochlospermum vitifolium . Despite marked seasonality in rainfall, meristem activity occurred throughout the year. Leaves were produced almost continuously during the rainy season, while leaf shedding started early during drought, before changes in soil water content were observed. Phenological activity under drought included flowering and fruiting of leafless trees; bud break and shoot extension took place before the end of the dry season. Low wood density of C. vitifolium stems (0.17 g/cm3) and lignotubers (0.14 g/cm3) provided water and starch storage needed to support phenological events such as branch extension, leaf flushing, and reproduction during the dry season, and probably also contributed to survival following mechanical damage and fire, typical of early TDF successional stages. Lignotuber water and starch contents showed substantial seasonal variation, declining from the beginning of the dry season to their lowest levels at the time of reproduction and dry-season flushing. Stems progressively replaced lignotubers as main storage organs as tree size increased. Evidence for a role of water stores in buffering daily water deficits was weak. Leaf water potentials remained above −1.2 MPa and stomatal conductance below 350 mmol/m2/s, suggesting that gas exchange during the rainy season was limited to prevent xylem cavitation. Leaf shedding occurred when early-morning and mid-day ΨL converged at the rainy–dry season transition, without changes in lignotuber or soil water content, suggesting that leaves of C. vitifolium are closely tuned to atmospheric drought.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp .  相似文献   

10.
Phenology influences many forest functions and can inform forest conservation and management, yet representative phenological data for most common tropical forest tree species remain sparse or absent. Between June 2011 and December 2013, we investigated flowering, fruiting, and leafing patterns in the Bwindi Impenetrable National Park, a montane forest located near the equator in Uganda, drawing on 16,410 observations of 530 trees of 54 species located between 2066 and 2527 m in elevation. The park's climate is equatorial with two wet and dry seasons each year. Flowering and fruiting were strongly seasonal while patterns in leafing were less pronounced. Flower occurrence peaked at the beginning of the short dry season followed by a pronounced trough during the beginning and the middle of the short wet season. Fruit occurrence had a pronounced peak during high rainfall months in March through April with most fruits ripening during drier months in May through July. Fruit scarcity was observed for a 4-month period spanning September to December and most flushing of leaves noted at the end of the wet season in November and December. Our binomial generalized linear mixed models indicated that flowering and fruiting were negatively associated with temperature and that leafing activity was positively associated with rainfall and temperature. These findings are consistent with the insolation- and water-limitation hypotheses suggesting that the seasonally varying availability of resources such as light, water, and nutrients determines these phenological patterns. Ideally, prolonged, multi-year community-level studies would be supported so as to better characterize the influence of climate and of climate variability.  相似文献   

11.
Phenological patterns in tropical plants usually are associated with the clear seasonality of rainfall associated with very different wet and dry seasons. In southern Brazil, in a subtropical forest with no pronounced dry season (average annual precipitation = 1389 mm, minimum monthly average c. 75 mm), plant phenology was studied to test for patterns (periodicity), to examine how phenological patterns vary among life-forms, and to test whether phenological cycles are associated with climatic variables. Thirty-seven plant species in four life-forms (trees, shrubs, lianas and epiphytes) were studied for 2 yr (1996-98) in an Araucaria forest remnant in southern Brazil, in the state of Paraná. Correlation and multiple regression methods established relationships between phenology and climate in terms of daylength, temperature and rainfall. In this Araucaria forest, plants showed seasonality in most life-forms and phenological phases. Leaf-fall, with its peak during the drier months (April to July), was the most seasonal. Flushing and flowering occurred during the wetter months (September to December), while fruiting occurred all year long. Phenologies varied among life-forms, and were strongly associated with daylength or temperature of preceding months, suggesting that plants receive their phenological cues well in advance of their phenological response. Phenologies in this Araucaria forest appear to be associated with the most predictable and highly correlated of the climatic variables, daylength and temperature and least so with rainfall, which is unpredictable.  相似文献   

12.
Phenology of Tree Species in Bolivian Dry Forests   总被引:2,自引:0,他引:2  
Phenological characteristics of 453 individuals representing 39 tree species were investigated in two dry forests of the Lomerío region, Department of Santa Cruz, Bolivia. The leaf, flower, and fruit production of canopy and sub–canopy forest tree species were recorded monthly over a two–year period. Most canopy species lost their leaves during the dry season, whereas nearly all sub–canopy species retained their leaves. Peak leaf fall for canopy trees coincided with the peak of the dry season in July and August. Flushing of new leaves was complete by November in the early rainy season. Flowering and fruiting were bimodal, with a major peak occurring at the end of the dry season (August–October) and a minor peak during the rainy season (January). Fruit development was sufficiently long in this forest that fruiting peaks actually tended to precede flowering peaks by one month. A scarcity of fruit was observed in May, corresponding to the end of the rainy season. With the exception of figs (Ficus), most species had fairly synchronous fruit production. Most canopy trees had small, wind dispersed seeds or fruits that matured during the latter part of the dry season, whereas many sub–canopy tree species produced larger animal– or gravity–dispersed fruits that matured during the peak of the rainy season. Most species produced fruit annually. Lomerio received less rainfall than other tropical dry forests in which phenological studies have been conducted, but rainfall can be plentiful during the dry season in association with the passage of Antarctic cold fronts. Still, phenological patterns in Bolivian dry forests appear to be similar to those of other Neotropical dry forests.  相似文献   

13.
Tree species that produce resources for fauna are recommended for forest restoration plantings to attract pollinators and seed dispersers; however, information regarding the flowering and fruiting of these species during early growth stages is scarce. We evaluated the reproductive phenology of animal‐dispersed tree species widely used in Atlantic Forest restoration. We marked 16 animal‐dispersed tree species in 3‐ to 8‐year‐old forest restoration plantings in Itu‐São Paulo, southeast Brazil. We noted the age of the first reproductive event, flowering and fruiting seasonality, percentage of trees that reached reproductive stages, and intensity of bud, flower, and fruit production for each species. Flowering and fruiting are seasonal for most species; only two, Cecropia pachystachya and Ficus guaranitica, exhibited continuous flowering and fruiting throughout the year; we also identified Schinus terebinthifolia and Dendropanax cuneatus fruiting in the dry season during resource scarcity. Therefore, we recommend all as framework species, that is, species that are animal‐dispersed with early flowering and fruiting potential, for forest restoration. Further, we recommend identifying and planting similar animal‐dispersed tree species that produce fruits constantly or in the dry season to maximize fauna resource availability throughout the year in tropical forest restoration plantings. Abstract in Portuguese is available with online material  相似文献   

14.
1982-2013年内蒙古地区植被物候对干旱变化的响应   总被引:7,自引:0,他引:7  
黄文琳  张强  孔冬冬  顾西辉  孙鹏  胡畔 《生态学报》2019,39(13):4953-4965
气候变化引起的植被物候变化正在大幅度改变生态系统,研究植被物候对干旱的响应对保护内蒙古的生态系统具有重要意义。根据1:100万植被区划,把内蒙古划分为8个植被分区,利用多时间尺度气象标准化降水蒸散指数(SPEI)和NDVI3g时序数据所反演的物候指标,分析内蒙古植被物候的时空变化及其对干旱的响应规律。结果显示:1)在1982年至2013年间,内蒙古植被受到不同时间尺度下干旱的高度控制,尤其是时间尺度干旱的影响(SPEI-3);2)对于整个研究区,生长季开始(SOS)呈提前趋势,生长季结束(EOS)呈延后趋势,生长季长度(LOS)呈延长趋势,像元比例分别为63.79%、59.77%和62.83%;3)内蒙古除荒漠植被类型地区外,同年春季和夏季初期干旱对SOS均具有延迟作用,同年秋季干旱对EOS均具有延迟作用 ;4) 不同植被类型对干旱强度指数的响应程度存在差异,响应程度集中在-10d/0.1-10d/0.1(例如,1d/0.1表示干旱强度指数每增大0.1,会导致物候指数延迟1 d,而-1d/0.1表示干旱强度指数每增大0.1,会导致物候指数提前1 d)。  相似文献   

15.
Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long‐term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought‐related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.  相似文献   

16.
Fruit production in tropical forests varies considerably in space and time, with important implications for frugivorous consumers. Characterizing temporal variation in forest productivity is thus critical for understanding adaptations of tropical forest frugivores, yet long-term phenology data from the tropics, in particular from African forests, are still scarce. Similarly, as the abiotic factors driving phenology in the tropics are predicted to change with a warming climate, studies documenting the relationship between climatic variables and fruit production are increasingly important. Here, we present data from 19 years of monitoring the phenology of 20 tree species at Ngogo in Kibale National Park, Uganda. Our aims were to characterize short- and long-term trends in productivity and to understand the abiotic factors driving temporal variability in fruit production. Short-term (month-to-month) variability in fruiting was relatively low at Ngogo, and overall fruit production increased significantly through the first half of the study. Among the abiotic variables, we expected to influence phenology patterns (including rainfall, solar irradiance, and average temperature), only average temperature was a significant predictor of monthly fruit production. We discuss these findings as they relate to the resource base of the frugivorous vertebrate community inhabiting Ngogo.  相似文献   

17.
Long-term responses in the phenology of Mediterranean macrofungi to climatic changes are poorly documented. Here, we address this issue by comparing the fruiting patterns of 159 fungal species in Southern France between the first half of the 19th century and the first decade of the 21st century. We used a trait-based approach to assess the influence of phenology and morphology of fungal fruit bodies and their site ecology and biogeography on the response to climate change. We show that early autumnal fruiters, epigeous species and species with affinities for cold climates now start to fruit on average 16.4, 17.3 and 17.3 d later compared to their emergence dates in the 19th century, while late fruiters, hypogeous species and Mediterranean-restricted species did not change their fruiting date. Among ecological guilds, saproxylic species and pine-associated mutualists delayed their autumnal emergence by 32.5 and 19.2 d, likely in response to a delayed rewetting of litter and woody debris after extended summer drought. Our results suggest that long-term climate warming in the Mediterranean was accompanied by contrasting changes in the emergence of fungal fruit bodies according to ecological guilds, sporocarp life-forms and forest types.  相似文献   

18.

Question

Identifying the factors that lead to the success of restoration projects has been a major challenge in ecological restoration. Here we ask which factors, aside from time since restoration began, drive the recovery of tree biomass, density and richness of the understorey in riparian forests undergoing restoration.

Location

Semideciduous Atlantic Forest with tropical climate and deep, fertile soils, southeast Brazil.

Methods

We sampled tree basal area (DBH ≥ 5 cm), density and richness of the understorey (DBH < 5 cm) in 26 riparian forests undergoing restoration (a chronosequence spanning 4–53 years). We assessed the following variables as possible factors, besides time, influencing community attributes: (1) planting design: density and richness of seedlings planted; (2) landscape features: proximity index measuring forest cover within a 1.5‐km radius, distance and size of the nearest forest remnant; and (3) environmental factors: invasive grasses, soil fertility, drought, average annual precipitation and proportion of fine particles in the soil. We performed correlation analyses including predictor and response variables, followed by stepwise backward regression (AIC), multiple and simple linear regressions, to investigate the relationships between those factors and the community attributes.

Results

Tree basal area was primarily influenced by the proportion of small particles in the soil (+) and secondarily by rainfall (?). Understorey richness was influenced by the combination of size (+) and distance (?) of the nearest patch, rainfall (?) and soil fertility (+). Understorey density was primarily influenced by the size of the nearest forest remnant (+) and secondarily by invasive grasses (?). No influence of density or richness of the seedlings planted was observed.

Conclusion

Environmental factors and landscape configuration drive the recovery of tree biomass, density and richness in communities undergoing restoration. The most relevant ecological filters influencing restoration success are availability of soil water and nutrients and the distance and size of the nearest remnant of native vegetation. The expected influence of richness and density of seedlings planted, considered for many years as important drivers of forest restoration success, was not confirmed in this study.  相似文献   

19.
Entrained phenology patterns of tropical trees are expected to be sensitive to short‐term fluctuations in typical rainfall and temperature. We examined 47 mo of data on the flowering, fruiting, and new leaf phenology for 797 trees from 38 species in the Taï National Park, Côte d'Ivoire. We determined the timing of the phenology cycles in relation to seasonal rainfall, temperature, and solar radiation. Regression analysis was used to examine how variations in rainfall and temperature influenced deviations in the peaks and troughs of phenology cycles. We also investigated whether populations that fruit during periods of community‐wide fruit scarcity were those populations with relatively long‐ or short‐fruiting duration. Flower, fruit, and leaf‐flushing phenophases all exhibited 12‐mo cycles. The broad peak in flowering began with the northward zenithal passing in April and ended with the southward zenithal passing in September. Fruiting peaks occurred in the long dry season, and leaf flushing peaked in the long dry season but continued into the wet season. Deviations from phenology cycles were largely attributable to short‐term fluctuations in rainfall and/or temperature. Fruiting durations of species were related to the mean diameter at breast height. Species with long‐ and short‐fruiting durations contributed equally to fruit abundance during periods of community‐wide fruit scarcity.  相似文献   

20.
Reproductive phenology of 171 plant species belonging to 57 families of angiosperms was studied according to life-forms in four habitat types in a savanna-forest mosaic on the Venezuelan Central Plain. Flowering, unripe fruit, and mature fruit patterns were affected significantly according to life-forms and habitats respectively. Production of flowers, unripe fruits, and mature fruits showed marked seasonality for all habitats except for the forest. Flowering peaked during the rainy season, and fruiting peaked toward the end of the rainy season. The savanna and the disturbed area had similar proportions of species that flowered over the year. The percentage of species with unripe fruits produced throughout the year was more seasonal for the disturbed area than for the other habitats. Mature fruit patterns showed an increase during the late rainy season for the ecotone and savanna. A large number of herbaceous (annual and perennial) and liana species flowered during the wet season, and a smaller fraction flowered during the dry season; and trees, shrubs, and epiphytes increased flowering activity during the dry season. Unripe fruit patterns were similar to those of flowering for all life-forms, however, tree species were less seasonal. Mature fruit production by shrubs peaked in the period of maximum rainfall, while the peak for perennial herbs was in the late rainy season and the peak for annual herbs was during the transition between the rainy season and the dry season. The largest proportion of tree and liana species with ripe fruits occurred during the dry season. Differences among phenological patterns in habitats were caused mainly by life-forms and promote a wider distribution of reproductive events in habitats and overall community in the Venezuelan Central Plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号