首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Males and females from many species produce distinct acoustic variations of functionally identical call types. Social behavior may be primed by sex‐specific variation in acoustic features of calls. We present a series of acoustic analyses and playback experiments as methods for investigating this subject. Acoustic parameters of phee calls produced by Wied's black‐tufted‐ear marmosets (Callithrix kuhlii) were analyzed for sex differences. Discriminant function analyses showed that calls contained sufficient acoustic variation to predict the sex of the caller. Several frequency variables differed significantly between the sexes. Natural and synthesized calls were presented to male–female pairs. Calls elicited differential behavioral responses based on the sex of the caller. Marmosets became significantly more vigilant following the playback of male phee calls (both natural and synthetic) than following female phee calls. In a second playback experiment, synthesized calls were modified by independently manipulating three parameters that were known to differ between the sexes (low‐, peak‐, and end‐frequency). When end‐frequency‐modified calls were presented, responsiveness was differentiable by sex of caller but did not differ from responses to natural calls. This suggests that marmosets did not use end‐frequency to determine the sex of the caller. Manipulation of peak‐and low‐frequency parameters eliminated the discrete behavioral responses to male and female calls. Together, these parameters may be important features that encode for the sex‐specific signal. Recognition of sex by acoustic cues seems to be a multivariate process that depends on the congruency of acoustic features. Am. J. Primatol. 71:324–332, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Studies on primate vocalisation have revealed different types of alarm call systems ranging from graded signals based on response urgency to functionally referential alarm calls that elicit predator‐specific reactions. In addition, alarm call systems that include both highly specific and other more unspecific calls have been reported. There has been consistent discussion on the possible factors leading to the evolution of different alarm call systems, among which is the need of qualitatively different escape strategies. We studied the alarm calls of free‐ranging saddleback and moustached tamarins (Saguinus fuscicollis and Saguinus mystax) in northeast Peru. Both species have predator‐specific alarm calls and show specific non‐vocal reactions. In response to aerial predators, they look upwards and quickly move downwards, while in response to terrestrial predators, they look downwards and sometimes approach the predator. We conducted playback experiments to test if the predator‐specific reactions could be elicited in the absence of the predator by the tamarins’ alarm calls alone. We found that in response to aerial alarm call playbacks the subjects looked significantly longer upwards, and in response to terrestrial alarm call playbacks they looked significantly longer downwards. Thus, the tamarins reacted as if external referents, i.e. information about the predator type or the appropriate reaction, were encoded in the acoustic features of the calls. In addition, we found no differences in the responses of S. fuscicollis and S. mystax whether the alarm call stimulus was produced by a conspecific or a heterospecific caller. Furthermore, it seems that S. fuscicollis terrestrial alarm calls were less specific than either S. mystax terrestrial predator alarms or either species’ aerial predator alarms, but because of the small sample size it is difficult to draw a final conclusion.  相似文献   

3.
I studied variation in male calling behavior and its social correlates in Blanchard's cricket frog, Acris crepitans blanchardi. Calls were produced in distinct call groups, and they increased in duration and complexity from the beginning to end of a call group. Dominant frequency was the only character of 18 quantified consistently correlated with male snout-vent length. Calls from the beginning of a call group varied independently of calls from the middle and end of a call group, and only calls from the beginning of a call group exhibited significant variation among males, thus relative consistency within males. Other characters varied greatly within individual males. Unlike most other anurans, dominant frequency also exhibited tremendous within-male variation. The relative influence of caller density, local caller density, nearest neighbor distance, and nearest neighbor sound pressure level on variation in male calling behavior was examined. Nearest neighbor distance, mediated through the sound-pressure level of neighbor calls, appeared to have the greatest influence on variation in male calling behavior. The most profound changes in calling behavior occurred during aggressive encounters; males altered their calling behavior in a manner suggesting that they respond to competitors with graded aggressive signals. Furthermore, the structure of the communication system suggests that calls are graded not only in response to the level of social competition, but graded over a call group as well.  相似文献   

4.
Individually distinct vocalizations play an important role in animal communication, allowing call recipients to respond differentially based on caller identity. However, which of the many calls in a species'' repertoire should have more acoustic variability and be more recognizable is less apparent. One proposed hypothesis is that calls used over long distances should be more distinct because visual cues are not available to identify the caller. An alternative hypothesis proposes that close calls should be more recognizable because of their importance in social interactions. To examine which hypothesis garners more support, the acoustic variation and individual distinctiveness of eight call types of six wild western gorilla (Gorilla gorilla) females were investigated. Acoustic recordings of gorilla calls were collected at the Mondika Research Center (Republic of Congo). Acoustic variability was high in all gorilla calls. Similar high inter-individual variation and potential for identity coding (PIC) was found for all call types. Discriminant function analyses confirmed that all call types were individually distinct (although for call types with lowest sample size - hum, grumble and scream - this result cannot be generalized), suggesting that neither the distance at which communication occurs nor the call social function alone can explain the evolution of identity signaling in western gorilla communication.  相似文献   

5.
Calls are functionally diverse signals that mediate behavior in a wide variety of contexts in both passerines and non‐passerines. However, the call‐based acoustic communication systems of non‐passerines have received less attention from investigators than those of passerines. We examined the vocal repertoire of Smooth‐billed Anis (Crotophaga ani), cooperatively breeding cuckoos that live in groups with multiple breeding pairs. We recorded calls from 22 groups over two breeding seasons at the Cabo Rojo National Wildlife Refuge in Puerto Rico. We identified 11 call types and one group vocalization, and used an automated sound measurement program to quantify their acoustic features. Discriminant function analysis (DFA) correctly classified 74.2% of calls based on these features. The vocal repertoire of Smooth‐billed Anis is larger than that reported for the three other species in the subfamily Crotophaginae. Smooth‐billed Anis have at least two alarm calls, two nest‐specific calls, and one nest defense call. We also identified one possible signal of aggressive intent, one possible appeasement signal, and two calls that may communicate identity. The relatively large vocal repertoire of Smooth‐billed Anis and association of distinct call types with different functions and contexts supports the main prediction of the social complexity hypothesis, i.e., species with more complex social systems will have more complex communication systems.  相似文献   

6.
Chick‐a‐dee calls of Poecile (chickadee) and Baeolophus (titmouse) species are complex in terms of the structural composition of note types and the diversity of messages. Studies so far have mainly focused on the calls of various chickadee and just one titmouse species—the tufted titmouse (B. bicolor). To begin to address this lack of titmouse data, our study investigated variation in note composition of calls of bridled titmice (B. wollweberi). We obtained calls from 26 flocks in the Chiricahua Mountains of Arizona in the overwintering flocking period. Bridled titmice produce proportionally more non‐combinatorial call variants than combinatorial call variants. The number of the single noted calls furthermore exceeded the number of multinote calls. In general, structural variation in the combinatorial calls appears to be comparable to calls of better‐studied chickadees and of tufted titmice, although bridled titmice appear to have a unique call length distribution. We also analyzed some behavioral associations with call variation and found that flight behavior and close interactions between individuals were associated with use of specific note types. Finally, we found microgeographic variation in note type use in these calls. We discuss some possible explanations for call complexity in this species.  相似文献   

7.
The ability for humans to create seemingly infinite meaning from a finite set of sounds has likely been a critical component in our success as a species, allowing the unbounded communication of information. Syntax, the combining of meaningful sounds into phrases, is one of the primary features of language that enables this extensive expressivity. The evolutionary history of syntax, however, remains largely debated, and it is only very recently that comparative data for syntax in animals have been revealed. Here, we provide further evidence for a structural basis of potential syntactic‐like call combinations in the vocal communication system of a group‐living songbird. Acoustic analyses indicate that Western Australian magpies (Gymnorhina tibicen dorsalis) structurally combine generic alarm calls with acoustically distinct alert calls to produce an alarm alert sequence. These results are distinct from previous examples of call combinations as, to our knowledge, evidence for this capacity is yet to be demonstrated in the natural communication of a non‐human species that is capable of vocal learning throughout life. These findings offer prospects for experimental investigation into the presence and function of magpie call combinations, extending our understanding of animal vocal complexity.  相似文献   

8.
Copulation calls in primates are usually identified as sexually selected signals that promote the reproductive success of the caller. In this study, we investigated the acoustic structure of copulation calls in bonobos (Pan paniscus), a great ape known for its heightened socio‐sexuality. Throughout their cycles, females engage in sexual relations with both males and other females and produce copulation calls with both partners. We found that calls produced during sexual interactions with male and female partners could not be reliably distinguished in terms of their acoustic structure, despite major differences in mating behaviour and social context. Call structure was equally unaffected by the size of a female’s sexual swelling and by the rank of her mating partner. Rank of the partner did affect call delivery although only with male, but not female partners. The only strong effect on call structure was because of caller identity, suggesting that these signals primarily function to broadcast individual identity during sexual interactions. This primarily social use of an evolved reproductive signal is consistent with a broader trend seen in this species, namely a transition of sexual behaviour to social functions.  相似文献   

9.
One suggested anti‐predator function of alarm calls is to deliver a message to a predator that it has been detected. Moreover, giving the alarm call could provide a signal to the predator that capturing the individual giving the alarm is more difficult than capturing its silent group members, as the caller is probably the most aware of the predator's location. In an aviary experiment using stuffed dummy Willow Tits Poecile montanus, we assessed whether an authentic alarm call given by Willow Tit affected Pygmy Owl Glaucidium passerinum prey preference. In the experiment, the Owls attacked only the ‘silent’ dummy individuals, suggesting that alarm calling could offer direct fitness benefits to the caller by decreasing the attack risk of the caller relative to its group members.  相似文献   

10.
Acoustic mating signals are typically species‐specific, and often additionally are subject to directional female preferences. Male executioner treefrogs, Dendropsophus carnifex, produce a multicomponent advertisement call composed of an introductory screech note followed by two or more click notes. Here, we tested (i) call recognition by comparing female directed phonotaxis towards individual and combined call components: screech vs. clicks vs. screech + clicks, (ii) female preferences for greater numbers of click notes and (iii) female preferences for faster call rates. The results demonstrated that screeches and clicks, presented either separately or together as a complete call, evoke similar female responses, suggesting that either note was sufficient to elicit a mate‐recognition response. Additionally, females preferred calls with greater numbers of click notes and with faster call rates. We interpret these results within the context of female mate selection in natural choruses.  相似文献   

11.
When individuals of a variety of species encounter a potential predator, some, but not all, emit alarm calls. To explain the proximate basis of this variation, we compared faecal glucocorticoid metabolite concentrations in live-trapped yellow-bellied marmots (Marmota flaviventris) between occasions when they did and did not emit alarm calls. We found that marmots had significantly higher glucocorticoid levels when they called than when they did not call, suggesting that stress or arousal may play an important role in potentiating alarm calls. Marmots are sensitive to variation in the reliability of callers. The present finding provides one possible mechanism underlying caller variation: physiological arousal influences the propensity to emit alarm calls.  相似文献   

12.
Many species approach predators to harass them and drive them away. Both the intensity of this antipredator strategy and its success are positively related to the size of the group that carries out this mobbing. To recruit individuals to the mob, members of prey species produce mobbing calls. In some songbirds—the Japanese tit, Parus minor, and the southern pied babbler, Turdoides bicolor—mobbing calls are structurally complex and it has been suggested that they convey information by means of compositional syntax, when meaningful items are combined into larger units. These two species combine alert and recruitment calls into an alert and recruitment sequence when attracting conspecifics to cooperate in mobbing a predator. Whether this rudimentary, two‐call, compositional structure is used by other bird species in mobbing calls and how it can alter the ability of heterospecifics to adequately recognize mobbing calls is not well understood. Heterospecifics’ responses to mobs are critical to the success of the mobbing strategy, so it is of great importance to understand whether and how syntax influences these responses. To address these questions, we conducted two playback experiments. Firstly, we investigated whether the great tit, Parus major, extracts different meanings from different individual motifs (i.e., component calls), and from combined motifs in both natural and artificially reversed order. We found that great tits extract different meanings from the two motifs involved in mobbing calls and that they also discriminate for motif order reversal in the mobbing call sequence. Secondly, we investigated whether heterospecifics (the coal tit, Periparus ater, and the common chaffinch, Fringilla coelebs) are sensitive to syntax alteration of great tit mobbing calls. While chaffinches did not respond to great tit mobbing calls, coal tits were sensitive to mobbing call sequence reversal although they did not react in the same way as conspecific subjects. Overall, whereas our results indicate that tits are sensitive to call reversal, this is not to say that tits actually use compositional syntax to increase the information content.  相似文献   

13.
In many animals, males aggregate to produce mating signals that attract conspecific females. These leks, however, also attract eavesdropping predators and parasites lured by the mating signal. This study investigates the acoustic preferences of eavesdroppers attracted to natural choruses in a Neotropical frog, the túngara frog (Engystomops pustulosus). In particular, we examined the responses of frog‐biting midges to natural variation in call properties and signaling rates of males in the chorus. These midges use the mating calls of the frogs to localize them and obtain a blood meal. Although it is known that the midges prefer complex over simple túngara frog calls, it is unclear how these eavesdroppers respond to natural call variation when confronted with multiple males in a chorus. We investigated the acoustic preference of the midges using calling frogs in their natural environment and thus accounted for natural variation in their call properties. We performed field recordings using a sound imaging system to quantify the temporal call properties of males in small choruses. During these recordings, we also collected frog‐biting midges attacking calling males. Our results revealed that, in a given chorus, male frogs calling at higher rates and with higher call complexity attracted a larger number of frog‐biting midges. Call rate was particularly important at increasing the number of midges attracted when males produced calls of lower complexity. Similarly, call complexity increased attractiveness to the midges especially when males produced calls at a low repetition rate. Given that female túngara frogs prefer calls produced at higher repetition rates and higher complexity, this study highlights the challenge faced by signalers when increasing attractiveness of the signal to their intended receivers.  相似文献   

14.
We investigated patterns of mating call preference and mating call recognition by examining phonotaxis of female túngara frogs, Physalaemus pustulosus, in response to conspecific and heterospecific calls. There are four results: females always prefer conspecific calls; most heterospecific calls do not elicit phonotaxis; some heterospecific calls do elicit phonotaxis and thus are effective mate recognition signals; and females prefer conspecific calls to which a component of a heterospecific call has been added to a normal conspecific call. We use these data to illustrate how concepts of species recognition and sexual selection can be understood in a unitary framework by comparing the distribution of signal traits to female preference functions.  相似文献   

15.
When facing a predator, animals need to perform an appropriate antipredator behavior such as escaping or mobbing to prevent predation. Many bird species exhibit distinct mobbing behaviors and vocalizations once a predator has been detected. In some species, mobbing calls transmit information about predator type, size, and threat, which can be assessed by conspecifics. We recently found that great tits (Parus major) produce longer D calls with more elements and longer intervals between elements when confronted with a sparrowhawk, a high‐threat predator, in comparison to calls produced in front of a less‐threatening tawny owl. In the present study, we conducted a playback experiment to investigate if these differences in mobbing calls elicit different behavioral responses in adult great tits. We found tits to have a longer latency time and to keep a greater distance to the speaker when sparrowhawk mobbing calls were broadcast. This suggests that tits are capable of decoding information about predator threat in conspecific mobbing calls. We further found a tendency for males to approach faster and closer than females, which indicates that males are willing to take higher risks in a mobbing context than females.  相似文献   

16.
Morphological resemblance of the common cuckoo Cuculus canorus to the Eurasian sparrowhawk Accipiter nisus has been regarded as an example of predator mimicry. Common hosts could distinguish parasites as the result of coevolution, while rare hosts or non‐hosts may mistake cuckoos for hawks because rare hosts or non‐hosts behave similarly when faced with these two species. Birds usually produce alarm calls in addition to showing behavioral responses when in danger. However, previous studies of identification by rare hosts or non‐hosts of sparrowhawks usually lacked experimental evidence of alarm calls. Great tits Parus major, a rare cuckoo host, perform similar behaviors and usually produce alarm calls in response to sparrowhawks and common cuckoos. Here, we tested whether great tits could distinguish common cuckoo from sparrowhawk based on analysis of their alarm calls and the effects of playback of alarm calls on conspecific behavior. Previous studies showed that great tits have a complex communication system that conveys information about predators, and they could perform different kinds of response behavior to different alarm calls. If great tits have not made the ability to distinguish between common cuckoo and sparrowhawk, then their acoustic responses to these two species and their response behaviors in playback experiments should be similar. Specimens of a common cuckoo (parasite), a sparrowhawk (predator) and an Oriental turtle dove Streptopelia orientalis (harmless control) were used to elicit and subsequently record the response behavior and alarm calls of great tits. There was no significant difference in behavioral response among great tits when exposed to the dummy of cuckoo, sparrowhawk and dove. In contrast, they differed significantly in alarm calls. Great tits produced more notes per call that contained increasing D‐type and decreasing I‐type notes when responding to sparrowhawk as compared to cuckoo or dove. In playback experiments, we found that great tits responded more strongly to great tit hawk than to great tit cuckoo or great tit dove alarm calls. Our study suggests that great tits are able to distinguish sparrowhawks from common cuckoos and convey relevant information in alarm calls by adjusting the number and combinations of notes of a single call type.  相似文献   

17.
Acoustic signals play a key role in shaping the relationships in birds. Common cuckoos Cuculus canorus are known to produce various call types, but the function of these calls has only been studied recently. Here, we used a combination of field recordings (conducted in 2017) and playback experiments (conducted in 2018) to investigate the functional significance of common cuckoo calls. We found significant differences in the characteristics between male two‐element “cu‐coo” and three‐element “cu‐cu‐coo” calls, with these two call types being used in different contexts. The three‐element male “cu‐cu‐coo” calls were associated with females emitting their “bubbling” call. Playback experiments revealed that both males and females exhibit stronger responses to playing female “bubbling” calls than with the calls of the Eurasian sparrowhawk (Accipter nisus) serving as a control, suggesting a significant intraspecific communication function for this call type. However, we did not find any evidence to support mate attraction in male calls, as females were not stimulated by playback of male calls compared with sparrowhawk calls in the control group.  相似文献   

18.
We investigated the intended receivers and contexts of occurrence of grunt and girney vocalizations in rhesus macaques (Macaca mulatta) to assess whether these calls are best interpreted as signals of benign intent or as calls that may function to attract the attention of other individuals or induce arousal. We focally observed 19 free‐ranging adult female rhesus macaques. Female calls increased dramatically after infants were born, and most were directed toward mother–infant dyads. When infants were physically separated from their mothers, callers visually oriented toward infants in over 90% of the cases, suggesting that infants were the intended receivers of grunts and girneys. Approaches followed by vocalizations were more likely to lead to the caller grooming the mother, less likely to elicit a submissive response, and more likely to result in infant handling than approaches without calls. Infant handling, however, was not necessarily benign. Vocalizations were often emitted from a distance >1 m and were rarely followed by approaches or social interactions. Our results suggest that grunts and girneys are unlikely to have evolved as signals that encode information about the caller's intention or subsequent behavior. Whereas girneys may be acoustically designed to attract infants’ attention and elicit arousal, grunts may have no adaptive communicative function. Mothers, however, may have learned that other females’ grunts and girneys are unlikely to be associated with significant risk and, therefore, are generally tolerant of the caller's proximity and behavior.  相似文献   

19.
Bats use sonar calls to locate prey and orient in their environment but they may also be used by conspecifics to obtain information about a caller. Statistical analysis of sonar calls provides evidence that variation carries social information about a caller, including individual identity. We hypothesized that little brown bats (Myotis lucifugus) would be able to recognize individuals given the potential fitness benefits of doing so. We performed playback trials using a habituation‐discrimination design to determine whether little brown bats are able to recognize the individual identity of a caller based on variation in their sonar calls. Each subject bat was played the calls of bat A until they habituated (defined as a 50% decrease from the beginning call rate), then the calls of bat B or a new call sequence of bat A (a control, referred to as bat A’) were played. Each subject received a unique pair of playback recordings (bat A and B) from adult female bats from the same colony (but a different colony from the subject) and the order of trials was randomized. The response measures were habituation time (s) and call rate (calls/s). Within a trial, subjects habituated to calls of bat A and transferred this habituation to the bat A’ sequence. In addition, they increased their call rates when played calls of bat B. Comparing between trials, subjects increased their call rate to the calls of bat B to a greater relative extent than to the calls of bat A’. These results provide the first evidence that bats recognize individual identity of conspecifics (as opposed to discrimination of groups), which has implications for the social interactions of bats.  相似文献   

20.
Individual specificity can be found in the vocalizations of many avian and mammalian species. However, it is often difficult to determine whether these vocal cues to identity rise from “unselected” individual differences in vocal morphology or whether they have been accentuated by selection for the purposes of advertising caller identity. By comparing the level of acoustic individuality of different vocalizations within the repertoire of a single species, it is possible to ascertain whether selection for individual recognition has modified the vocal cues to identity in particular contexts. We used discriminant function analyses to determine the level of accuracy with which calls could be classified to the correct individual caller, for three dwarf mongoose (Helogale parvula) vocalizations: contact, snake, and isolation calls. These calls were similar in acoustic structure but divergent in context and function. We found that all three call types showed individual specificity but levels varied with call type (increasing from snake to contact to isolation call). The individual distinctiveness of each call type appeared to be directly related to the degree of benefit that signalers were likely to accrue from advertising their identity within that call context. We conclude that dwarf mongoose signalers have undergone selection to facilitate vocal individual recognition, particularly in relation to the species’ isolation call.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号