首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the biosynthesis or signaling pathways of gibberellin (GA) can cause dwarfing phenotypes in plants, and the use of such mutations in plant breeding was a major factor in the success of the Green Revolution. DELLA proteins are GA signaling repressors whose functions are conserved in different plant species. Recent studies show that GA promotes stem growth by causing degradation of DELLA proteins via the ubiquitin-proteasome pathway. The most widely utilized dwarfing alleles in wheat (Triticum aestivum; e.g. Rht-B1b and Rht-D1b) encode GA-resistant forms of a DELLA protein that function as dominant and constitutively active repressors of stem growth. All of the previously identified dominant DELLA repressors from several plant species contain N-terminal mutations. Here we report on a novel dwarf mutant from Brassica rapa (Brrga1-d) that is caused by substitution of a conserved amino acid in the C-terminal domain of a DELLA protein. Brrga1-d, like N-terminal DELLA mutants, retains its repressor function and accumulates to high levels, even in the presence of GA. However, unlike wild-type and N-terminal DELLA mutants, Brrga1-d does not interact with a protein component required for degradation, suggesting that the mutated amino acid causes dwarfism by preventing an interaction needed for its degradation. This novel mutation confers nondeleterious dwarf phenotypes when transferred to Arabidopsis (Arabidopsis thaliana) and oilseed rape (Brassica napus), indicating its potential usefulness in other crop species.  相似文献   

2.
陆地棉矮化突变体Ari1327茎尖的转录组分析   总被引:2,自引:0,他引:2  
为了从分子水平上研究陆地棉矮秆突变体Ari1327的矮化机理,本研究以矮秆突变体Ari1327、野生型Ari971和高秆突变体Ari3697的茎尖为材料,建立3个cDNA文库,用Illumina HiSeqTM2000系统对3个材料的茎尖cDNA进行转录组测序。3个文库测序共得4.9 G数据量,拼接得到Unigene 70877个。通过矮化突变体Ari1327与野生型Ari971和高秆突变体Ari3697两个文库的差异筛选,得到13919个与矮化相关的差异表达基因,其中5406个表现上调,8513个表现下调。GO功能和KEGG通路富集发现,差异基因在植物激素信号转导途径显著富集。通过实时荧光定量PCR(qRT-PCR)验证,推测Ari1327的矮化可能与赤霉素和生长素2种激素的信号转导及互作有关。转录组测序得到的大量差异基因,为深入研究棉花的矮化机理具有重要参考价值,同时为棉花的矮化育种工作奠定了基础。  相似文献   

3.
The aim of the investigation reported here was to assess the role of gibberellin in cotton fiber development. The results of experiments in which the gibberellin (GA) biosynthesis inhibitor paclobutrazol (PAC) was tested on in vitro cultured cotton ovules revealed that GA is critical in promoting cotton fiber development. Plant responses to GA are mediated by DELLA proteins. A cotton nucleotide with high sequence homology to Arabidopsis thaliana GAI (AtGAI) was identified from the GenBank database and analyzed with the BLAST program. The full-length cDNA was cloned from upland cotton (Gossypium hirsutum, Gh) and sequenced. A comparison of the putative protein sequence of this cDNA with all Arabidopsis DELLA proteins indicated that GhRGL is a putative ortholog of AtRGL. Over-expression of this cDNA in Arabidopsis plants resulted in the dwarfed phenotype, and the degrees of dwarfism were related to the expression levels of GhRGL. The deletion of 17 amino acids, including the DELLA domain, resulted in the dominant dwarf phenotype, demonstrating that GhRGL is a functional protein that affects plant growth. Real-time quantitative PCR results showed that GhRGL mRNA is highly expressed in the cotton ovule at the elongation stage, suggesting that GhRGL may play a regulatory role in cotton fiber elongation.  相似文献   

4.
5.
This article presents evidence that DELLA repression of gibberellin (GA) signaling is relieved both by proteolysis-dependent and -independent pathways in Arabidopsis thaliana. DELLA proteins are negative regulators of GA responses, including seed germination, stem elongation, and fertility. GA stimulates GA responses by causing DELLA repressor degradation via the ubiquitin-proteasome pathway. DELLA degradation requires GA biosynthesis, three functionally redundant GA receptors GIBBERELLIN INSENSITIVE DWARF1 (GID1a, b, and c), and the SLEEPY1 (SLY1) F-box subunit of an SCF E3 ubiquitin ligase. The sly1 mutants accumulate more DELLA proteins but display less severe dwarf and germination phenotypes than the GA biosynthesis mutant ga1-3 or the gid1abc triple mutant. Interestingly, GID1 overexpression rescued the sly1 dwarf and infertility phenotypes without decreasing the accumulation of the DELLA protein REPRESSOR OF ga1-3. GID1 rescue of sly1 mutants was dependent on the level of GID1 protein, GA, and the presence of a functional DELLA motif. Since DELLA shows increasing interaction with GID1 with increasing GA levels, it appears that GA-bound GID1 can block DELLA repressor activity by direct protein-protein interaction with the DELLA domain. Thus, a SLY1-independent mechanism for GA signaling may function without DELLA degradation.  相似文献   

6.
Gibberellic acid (GA) is both necessary and sufficient to promote fiber elongation in cultured fertilized ovules of the upland cotton variety Coker 312. This is likely due to the temporal and spatial regulation of GA biosynthesis, perception, and subsequent signal transduction that leads to alterations in gene expression and morphology. Our results indicate that the initiation of fiber elongation by the application of GA to cultured ovules corresponds with increased expression of genes that encode xyloglucan endotransglycosylase/hydrolase (XTH) and expansin (EXP) that are involved in promoting cell elongation. To gain a better understanding of the GA signaling components in cotton, that lead to such changes in gene expression, two GA receptor genes (GhGID1a and GhGID1b) and two DELLA protein genes (GhSLR1a and GhSLR1b) that are orthologous to the rice GA receptor (GID1) and the rice DELLA gene (SLR1), respectively, were characterized. Similar to the GA biosynthetic genes, expression of GhGID1a and GhGID1b is under the negative regulation by GA while GA positively regulates GhSLR1a. Recombinant GST-GhGID1s showed GA-binding activity in vitro that was augmented in the presence of GhSLR1a, GhSLR1b, or rice SLR1, indicating complex formation between the receptors and repressor proteins. This was further supported by the GA-dependent interaction of these proteins in yeast cells. Ectopic expression of the GhGID1a in the rice gid1-3 mutant plants rescued the GA-insensitive dwarf phenotype, which demonstrates that it is a functional GA receptor. Furthermore, ectopic expression of GhSLR1b in wild type Arabidopsis led to reduced growth and upregulated expression of DELLA-responsive genes.  相似文献   

7.
Two-dimensional gel electrophoresis (2-DE)-based proteomics approach was applied to extensively explore the molecular basis of plant development and environmental adaptation. These proteomics analyses revealed thousands of differentially expressed proteins (DEPs) closely related to different biological processes. However, little attention has been paid to how peptide mass fingerprinting (PMF) data generated by the approach can be directly utilized for the determination of protein phosphorylation. Here, we used the software tool FindMod to predict the peptides that might carry the phosphorylation modification by examining their PMF data for mass differences between the empirical and theoretical peptides and then identified phosphorylation sites using MALDI TOF/TOF according to predicted peptide data from these DEP spots in the 2-D gels. As a result, a total of 48 phosphorylation sites of 40 DEPs were successfully identified among 235 known DEPs previously revealed in the 2-D gels of elongating cotton fiber cells. The 40 phosphorylated DEPs, including important enzymes such as enolase, transketolase and UDP-L-rhamnose synthase, are presumed to participate in the functional regulation of numerous metabolic pathways, suggesting the reverse phosphorylation of these proteins might play important roles in elongating cotton fibers. The results also indicated that some different isoforms of the identical DEP revealed in our 2-DE-based proteomics analysis could be annotated by phosphorylation events. Taken together, as the first report of large-scale identification of phosphorylation sites in elongating cotton fiber cells, our study provides not only an excellent example of directly identifying phosphorylation sites from known DEPs on 2-D gels but also provides a valuable resource for future functional studies of phosphorylated proteins in this field.  相似文献   

8.
Plant height and grain shape are important traits that may affect yield in rice, and they therefore have enormous importance in breeding. A dwarf small-grain mutant (S525) was identified among progeny of the Indica rice restorer line ‘Xida 1B’ (wild type) raised from seeds treated with ethyl methanesulfonate. The dwarf and small-grain phenotypes were stably inherited after multi-generation selfing. Field-grown mutant plants showed the phenotypes of dwarfism, broad leaves, and small round grains. Genetic mapping and sequencing confirmed that S525 was a novel d1-allelic mutant. A single-base transition (G to A) in the functional dwarfism gene D1 at the conjunction site of the 11th intron caused excision or duplication of the 11th exon in the mRNA and resulted in translation of a defective Gα protein. The S525 showed enhanced salt tolerance compared with the wild type (WT), and the expression of genes associated with salt tolerance quantitatively increased in response to treatment with 200 mM NaCl. The S525 may be useful for future investigation of Gα functions and in the breeding of new dwarf rice cultivars.  相似文献   

9.
一个新矮生玉米种质资源的发现与遗传鉴定   总被引:2,自引:0,他引:2  
玉米矮生种质资源在育种工作中具有重要的利用价值。2002年在玉米种质资源扩繁与鉴定过程中,从玉米自交系K36中发现一株矮生突变体。随后通过连续自交,获得了纯合一致、稳定的矮生自交系,命名为矮2003。该矮秆材料在北京表现株高62.1cm,植株清秀,茎秆坚硬,结实正常。于不同时期用不同浓度赤霉素处理该材料显示其对赤霉素反应不敏感。矮2003与正常玉米自交系测交F1呈现高秆,F2与BC1高、矮秆分离比例分别符合3:1与1:1,遗传分析表明其矮生性状受一对主效单基因控制,表现为隐性遗传。所携带的矮生基因不同于已报道的玉米Dwarf8等。  相似文献   

10.
The physiological basis of dwarfism in a single-gene, recessive mutant of Silene armeria L. was investigated through comparison with a normal strain. Exposure of the normal strain to long days led to stem growth and flower formation while similar exposure of the dwarf strain led only to flowering, with very little stem growth. Application of gibberellin A3 or A4+7 in short days promoted stem elongation in the normal strain, but had a much lesser effect in the dwarf strain. Upon extraction and chromatographic fractionation of the endogenous gibberellins (GAs) in the normal strain of S. armeria, three zones of GA activity were found. An increase in one zone of activity was found in both strains after 1 long day. Neither the quality nor the quantity of the extractable GAs differed greatly between the dwarf and the normal strain. Vegetative dwarf scions, grafted onto fully induced, normal stocks formed flowers, but their growth habit was not changed. Thus, the lack of stem growth in response to long days in the dwarf strain appears to result from a lack of GA sensitivity in the stem tissue of these plants. However, during flower formation dwarf plants did exhibit elongation of the peduncles. This response was suppressed by the growth retardant 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618), and applied GA3 could partially overcome this inhibition. Thus, peduncle elongation in the dwarf strain appears to be regulated by endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - SD short day(s)  相似文献   

11.
Genetics of dominant gibberellin-insensitive dwarfism in maize   总被引:20,自引:2,他引:18       下载免费PDF全文
Harberd NP  Freeling M 《Genetics》1989,121(4):827-838
D8 and Mpl1 are two dominant dwarfing mutations of maize. Although they differ in severity of dwarfism, both D8 and Mpl1 mutants are unresponsive to gibberellin (GA). Because of their close phenotypic resemblance to the recessive GA-sensitive dwarf mutants these dominant mutations may identify a gene whose product is involved in the reception of GA. With this possibility in mind we have studied the genetic properties of D8 and Mpl1. Both mutations map close to Adh1 on chromosome 1L. By marking normal and translocated 1L arms with different Adh1 electrophoretic mobility alleles, we investigated the effect of gene dosage on dominant dwarf phenotype. The results suggest that D8 and Mpl1 encode novel product functions and that these functions are relatively insensitive to the presence of the (presumed) wild-type product. Using X-ray induced chromosome breakage we created sectors of wild-type cells within D8 or Mpl1 tissue; these sectors were marked by the linked recessive lw mutation. The phenotypes of these sectors demonstrated that, at least in certain plant organs and tissues, dominant dwarfism can be an autonomous phenotype. These results are consistent with the hypothesis that the wild-type gene product acts as a GA receptor. The potential utility of dominant dwarf phenotype in plant developmental analysis is discussed, and possible mechanisms for the action of the D8 and Mpl1 mutations are considered.  相似文献   

12.
13.
赤霉素信号转导与棉纤维的分子发育   总被引:1,自引:0,他引:1  
王荣  崔百明  彭明  张根发 《遗传》2007,29(3):276-282
赤霉素(Gas)作为一种高效能的植物生长调节物质对棉纤维的分化和发育有着非常重要的影响, 但是, 一直以来有关赤霉素与棉纤维分化和发育的分子机制的研究还很少。文章论述了近年来GA信号组分、转导途径的分子生物学研究进展以及GA与棉纤维分子发育的相关研究成果, 旨在为揭示赤霉素调控棉纤维分化和发育的分子机制以及改善棉纤维品质的棉花育种工作提供新的思路。  相似文献   

14.
15.
16.
White light suppressed the stem growth and promoted leaf expansion. With increased irradiance the light effect was enhanced. The morphogenetic effects induced by light and by dwarf-mutation are similar. However, the nature of phenotyplc and genotyplc dwarfism is different. In the dwarf mutants the auxin level is not changed in contrast to the GA, ABA and QGC contents. Under high irradiance which depressed the stem growth, auxin and GA-levels were lowered while the content of QGC and of growth-inhibitor non-identical with ABA increased, but the level of ABA was not affected. The sensitivity of various pea forms to the light and to exogenous phytohormones (GA and IAA) is different. The plants with the shortest stems were more sensitive to light and GA. Data on the stem growth and rhizogenesis induced by light and by GA are presented. The metabolism of 2-14C-PCA (precursor of QGC) in tall and dwarf forms is different. The possible role of phytohormones and some phenolic compounds in the regulation of growth and morphogenesis of phenotyplc and genotyplc dwarf forms is discussed.  相似文献   

17.

Background

Elevated levels of reactive oxygen species (ROS) are detected in 25% to 80% of infertile men. They are involved in the pathology of male infertility. Understanding the effect of increasing levels of ROS on the differential expression of sperm proteins is important to understand the cellular processes and or/pathways that may be implicated in male infertility. The aim of this study was to examine differentially expressed proteins (DEPs) in spermatozoa from patients with low, medium and high ROS levels.

Methods

A total of 42 infertile men presenting for infertility and 17 proven fertile men were enrolled in the study. ROS levels were measured by chemiluminescence assay. Infertile men were divided into Low (0- < 93 RLU/s/106 sperm) (n = 11), Medium (>93-500 RLU/s/106 sperm) (n = 17) and High ROS (>500 RLU/s/106 sperm) group (n = 14). All fertile men had ROS levels between 4-50 RLU/s/106 sperm. 4 subjects from fertile group and 4 each from the Low, Medium and High ROS were pooled. Protein extraction, protein estimation, gel separation of the proteins, in-gel digestion, LTQ-orbitrap elite hybrid mass spectrometry system was conducted. The DEPs, the cellular localization and pathways of DEPs involved were examined utilizing bioinformatics tools.

Results

1035 proteins were identified in the 3 groups by global proteomic analysis. Of these, 305 were DEPs. 51 were unique to the Low ROS group, 47 Medium ROS group and 104 were unique to the High ROS group. 6 DEPs were identified by Uniprot and DAVID that had distinct reproductive functions and they were expressed only in 3 ROS groups but not in the control.

Conclusions

We have for the first time demonstrated the presence of 6 DEPs with distinct reproductive functions only in men with low, medium or high ROS levels. These DEPs can serve as potential biomarkers of oxidative stress induced male infertility.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-12-4) contains supplementary material, which is available to authorized users.  相似文献   

18.
In our previous study, we used a comparative proteomic approach based on 2DE to profile dynamic proteomes of cotton fibers and found 235 protein spots differentially expressed during the elongation process ranging from 5 to 25 days post‐anthesis. Of them, only 106 differentially expressed proteins (DEPs) were identified by MS due to database limitations at the time. In the present work, we successfully identified the remaining 129 DEPs from the same experimental system using high‐resolution MS with an updated database. Bioinformatic analysis revealed that proteins involved in carbohydrate and protein metabolism, transport, and redox homeostasis are the most abundant, and glycolysis was found to be the most significantly regulated process during fiber elongation. Our high‐confidence reference dataset, composed of 235 DEPs, provides a valuable resource for future studies on the molecular mechanism of cotton fiber elongation.  相似文献   

19.
Identification and characterization of Arabidopsis gibberellin receptors   总被引:3,自引:0,他引:3  
Three gibberellin (GA) receptor genes (AtGID1a, AtGID1b and AtGID1c), each an ortholog of the rice GA receptor gene (OsGID1), were cloned from Arabidopsis, and the characteristics of their recombinant proteins were examined. The GA-binding activities of the three recombinant proteins were confirmed by an in vitro assay. Biochemical analyses revealed similar ligand selectivity among the recombinants, and all recombinants showed higher affinity to GA(4) than to other GAs. AtGID1b was unique in its binding affinity to GA(4) and in its pH dependence when compared with the other two, by only showing binding in a narrow pH range (pH 6.4-7.5) with 10-fold higher affinity (apparent K(d) for GA(4) = 3 x 10(-8) m) than AtGID1a and AtGID1c. A two-hybrid yeast system only showed in vivo interaction in the presence of GA(4) between each AtGID1 and the Arabidopsis DELLA proteins (AtDELLAs), negative regulators of GA signaling. For this interaction with AtDELLAs, AtGID1b required only one-tenth of the amount of GA(4) that was necessary for interaction between the other AtGID1s and AtDELLAs, reflecting its lower K(d) value. AtDELLA boosted the GA-binding activity of AtGID1 in vitro, which suggests the formation of a complex between AtDELLA and AtGID1-GA that binds AtGID1 to GA more tightly. The expression of each AtGID1 clone in the rice gid1-1 mutant rescued the GA-insensitive dwarf phenotype. These results demonstrate that all three AtGID1s functioned as GA receptors in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号