首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is often hypothesized that two species competing for the same resource cannot stably coexist unless they partition their resources in space and time. More recently stable isotope analyses have complemented traditional, observation‐based niche research by conceptualizing many of the characteristics of communities, for example, trophic niche width and the partitioning of resources. Here we quantify resource partitioning of sympatric small mammal species in an African ecosystem by analysing stable isotope ratios of hair collected from a South African forest‐grassland vegetation mosaic, and combine this with known spatial and temporal behavioural data to interpret community competition and resource partitioning. We observe niche separation to different degrees across the entire community, with different species displaying either unique isotopic dietary preferences, or partitioning resources in space and/or time. δ13C values were more enriched in species that inhabited afromontane grassland compared with those that inhabited afromontane forest, a reflection of the dominant vegetation in each habitat. Contrary to expectations, arboreal rodents occupied higher trophic positions than terrestrial rodents and approaching δ15N values similar to insectivorous shrews, suggesting that arboreal rodents feed on items such as arthropods enriched in 15N. While grassland species display phenotypic plasticity in terms of dietary preferences, small mammals that occurred in forests display narrow niche preferences, suggesting these species may be particularly sensitive to habitat modifications. Our results illustrate that the use of stable isotopes can be used in conjunction with spatial and temporal behavioural knowledge to elucidate resource partitioning in small African mammal communities.  相似文献   

2.
3.
Unraveling the mechanisms facilitating species coexistence in communities is a central theme in ecology. Species‐rich tropical mammal communities provide excellent settings to explore such mechanisms as they often harbor numerous congeneric species with close phylogenetic relationships. Explicit tests for the mechanisms that allow syntopic occurrence in these assemblages, however, is often hampered because of the difficulty in obtaining detailed ecological data on the organisms making up the community. Using stable nitrogen and carbon ratios of hair samples, we examine whether trophic niche differentiation and microhabitat segregation explain the coexistence of 21 small mammal species at a montane humid forest site in eastern Madagascar. Overall, the community was trophically diverse and covered wide isotopic space. This diversity was based on: (1) a multi‐layered trophic community structure with mainly frugivorous‐granivorous rodents (subfamily Nesomyinae) as primary consumers and insectivorous tenrecs (family Tenrecidae) as secondary and tertiary consumers; (2) trophic segregation of rodents and tenrecs with the latter occupying different microhabitats; and (3) a dense and regular packing of species in the community. The 12 locally occurring Microgale shrew tenrecs (subfamily Oryzorictinae) showed high trophic redundancy, but were maximally spaced from each other within the trophic space covered by the genus. Results of stable isotope analysis suggest that in combination the differentiation of microhabitats and trophic niches explain the coexistence of small mammals in this community. Congeneric species appeared to be under more intense competition compared with non‐congeneric species and their coexistence can only partly be explained by trophic and microhabitat niche segregation.  相似文献   

4.
Although competition and predation are considered to be among the most important biotic processes influencing the distribution and abundance of species in space and time, the relative and interactive roles of these processes in communities comprised of cyclically fluctuating populations of small mammals are not well known. We examined these processes in and among populations of field voles, sibling voles, bank voles and common shrews in western Finland, using spatially replicated trapping data collected four times a year during two vole cycles (1987–1990 and 1997–1999). Populations of the four species exhibited relatively strong interspecific temporal synchrony in their multiannual fluctuations. During peak phases, we observed slight deviations from close temporal synchrony: field vole densities peaked at least two months earlier than those of either sibling voles or bank voles, while densities of common shrews peaked even earlier. The growth rates of all four coexisting small mammal species were best explained by their own current densities. The growth rate of bank vole populations was negatively related to increasing densities of field voles in the increase phase of the vole cycle. Apart from this, no negative effects of interspecific density, direct or delayed, were observed among the vole species. The growth rates of common shrew populations were negatively related to increasing total rodent (including water voles and harvest mice) densities in the peak phase of the vole cycle. Sibling voles appeared not to be competitively superior to field voles on a population level, as neither of these Microtus voles increased disproportionately in abundance as total rodent density increased. We suggest that interspecific competition among the vole species may occur, but only briefly, during the autumn of peak years, when the total available amount of rodent habitat becomes markedly reduced following agricultural practices. Our results nonetheless indicate that interspecific competition is not a strong determinant of the structure of communities comprised of species exhibiting cyclic dynamics. We suggest that external factors, namely predation and shortage of food, limit densities of vole populations below levels where interspecific competition occurs. Common shrews, however, appear to suffer from asymmetric space competition with rodents at peak densities of voles; this may be viewed as a synchronizing effect.  相似文献   

5.
The feeding niches and trophic ecology of two South African grazers, blue wildebeest Connochaetes taurinus and black wildebeest Connochaetes gnou, are compared using stable carbon and nitrogen isotope data from feces and tooth dentine collagen. As sympatric, closely related taxa predicted to occupy similar trophic positions, the blue and black wildebeest provide a good model for studying the mechanisms of coexistence and macroevolution in mammals. Data from feces collected from a single reserve in the Free State Province reveal different trophic behaviors between two herds of blue wildebeest and between both compared with a single herd of black wildebeest. These data suggest that sympatric coexistence of blue and black wildebeest is facilitated by differential niche occupation at family group or herd levels, rather than between species. However, such separation does not occur over longer time scales: results from dentine collagen support the hypothesis that the two species are indistinct in terms of trophic behavior, although blue wildebeest show more feeding flexibility, probably because of their wider habitat tolerance range. Similarities in premaxillary width of males and females of both species also suggest that both species are adapted to similar feeding styles. Thus, it is unlikely that changes in trophic behavior provided the trigger for divergence of the black from the blue wildebeest lineage in the Middle Pleistocene. We argue that the case of these two species represents an example of speciation that was not driven by resource competition, as is often assumed for many turnover events in mammalian evolution. We briefly discuss a previous suggestion that links black wildebeest evolution to their more territorial breeding behavior associated with Middle-to-Late Pleistocene landscape changes in southern Africa.  相似文献   

6.
Trophic status of small mammals in the semi-arid Karoo, South Africa   总被引:1,自引:0,他引:1  
The feeding habits of a community of small mammals from the semi-arid Karoo, South Africa were analysed by microscopic examination of the stomach contents of animals caught during a 13-month snap-trapping study. The community comprised eight rodent species ( Gerbillurus paeba, Mus minutoides, Rhabdomys pumilio, Otomys unisulcatus, Saccostomus campestris, Desmodillus auricularis, Malacothrix typica, Mastomys natalensis ) and a single macroscelid elephant shrew ( Macroscelides proboscideus. ) The rodents were all predominantly herbivorous, while the elephant shrew ate mainly insects. No granivores or omnivores were represented in this community. The results presented here (including the first analysis of the diet of M. typica ) indicate a greater emphasis on herbivory than previously described for these species. Limited dietary overlap was recorded between these species, although some instances of potential dietary competition that deserve further study were identified. The paucity of granivorous small mammals in the semi-arid Karoo contrasts the patterns of trophic specialization for North American and Israeli semi-arid communities, but is similar to that of South American, Australian and other southern African semi-arid communities.  相似文献   

7.
The diets of sympatric rodents partially define their realized niches. Identifying items in stomachs of introduced rodents helps determine rodents’ trophic positions and species most at risk of consumption. In the Hawaiian Islands, which lacked rodents prior to human arrival, three rodents (Rattus rattus or black rat, R. exulans or Pacific rat, Mus musculus or house mouse) commonly coexist in native habitats where they consume a wide range of plants and animals. These three rodent species were trapped in montane forest for 2.5 years; their stomach contents were analyzed to determine short-term diets (n = 12–95 indiv. per species), and isotopic fractions of δ15N and δ13C in their bone collagen were analyzed to further estimate their trophic positions (n = 11–20 indiv. per species). For all three species, >75 % of individuals had plants and >90 % had arthropods in their stomachs, and significant differences in mean relative abundances were found for food items in stomachs among all three rodents. Rodents may be dispersing some native and non-native seeds, including the highly invasive Clidemia hirta. Most identifiable arthropods in rodent stomachs were non-native, and no stomachs contained birds, snails, or lizards. The δ15N and δ13C signatures were consistent with trophic feeding differences revealed from stomach contents. Dietary niche differentiation by coexisting rodent species is evident in this forest, with Pacific rats being intermediate between the mostly carnivorous house mouse and the mostly herbivorous black rat; such findings can help forecast rodent impacts and direct management efforts in ecosystems where these invasive animals coexist.  相似文献   

8.
李云凯  汪惠琼  陈新军  贡艺 《生态学报》2020,40(15):5418-5423
同域近缘种由于进化选择的压力,会形成不同的行为适应策略。研究同域近缘种生态位格局,有助于理解近缘物种的竞争和共存机制,是深入了解种群动态变化的基础性问题。选取东太平洋赤道海域的柔鱼科头足类近缘种茎柔鱼和鸢乌贼为研究对象,利用生物地球化学示踪物(稳定同位素和脂肪酸)分析两种头足类的营养生态位及相互关系。结果显示,茎柔鱼和鸢乌贼肌肉的部分必需脂肪酸(C18∶2n6、C20∶2n6、C20∶3n3、C20∶4n6和C20∶5n3)含量存在差异,说明二者食物来源不同,但其碳、氮稳定同位素比值无显著差异,可能是因为相同个体大小的茎柔鱼和鸢乌贼营养级相近,且摄食空间相似。这些结果在营养生态位的分析结果中也得到了验证,稳定同位素营养生态位的重叠程度高于脂肪酸营养生态位,表明脂肪酸组成更能体现同域近缘种的食性差异。本研究可加深对头足类进化过程中摄食行为适应机制的理解,并为评估同域近缘种的营养生态位关系提供有益参考。  相似文献   

9.
Stable isotope analyses were employed to explore feeding and foraging habitats and trophic levels of littoral fishes in a western Mediterranean Marine Protected Area (Egadi Islands, Sicily, Italy). Carbon and nitrogen stable isotope ratios were measured in primary producers, invertebrates and fishes collected in December 2001 and January 2002. Fishes of the littoral region of the Egadi Islands had isotopic signatures that fell into a wider range for δ 13C (about 6‰) than for δ 15N (about 3‰). Carbon isotope ratios were consistent with a food web based on mixed sources and two trophic pathways leading to different fish species. Differences in the isotopic composition between islands were higher for benthivorous than for planktivorous fishes. The overall picture gained from this study is of a isotopic distinction between planktivorous and benthivorous fishes, resource partitioning facilitating the coexistence of similar species within the same ecosystem, and spatial variability in the isotopic signatures and trophic level of fishes. Asymmetrical analysis of variance showed that estimated trophic levels were lower in the area with the highest level of protection (Zone A) for only two out of the nine fishes analysed. As a consequence, overall spatial differences do not seem to be a consequence of protection, since in most cases trophic levels did not change significantly between zone A and zones C where professional fishing (trawling apart) is permitted, but of natural sources of variation (e.g. variability in food availability and site-specific food preferences of fishes). However, the results of this study suggest a different response at the species compared to the community level.  相似文献   

10.
The persistence of mesic savannas has been theorised as being dependent on disturbances that restrict the number of juveniles growing through the sapling size class to become fire-tolerant trees. We analysed the population structures of four dominant tropical savanna tree species from 30 locations in Kakadu National Park (KNP), northern Australia. We found that across KNP as a whole, the population size structures of these species do not exhibit recruitment bottlenecks. However, individual stands had multimodal size-class distributions and mixtures of tree species consistent with episodic and individualistic recruitment of co-occurring tree species. Using information theory and multimodel inference, we examined the relative importance of fire frequency, stand basal area and elevation difference between a site and permanent water in explaining variations in the proportion of sapling to adult stems in four dominant tree species. This showed that the proportion of the tree population made up of saplings was negatively related to both fire frequencies and stand basal area. Overall, fire frequency has density-dependent effects in the regulation of the transition of saplings to trees in this Australian savanna, due to interactions with stem size, regeneration strategies, growth rates and tree–tree competition. Although stable at the regional scale, the spatiotemporal variability of fire can result in structural and floristic diversity of savanna tree populations.  相似文献   

11.
A Lotka-Volterra system for a multiple species community with two trophic levels is analyzed to illustrate how community structure is reorganized upon invasions of predators. The lower trophic level is assumed to consist of interfering competing species, some of which are preferentially consumed by invading predators. Effects of invading predators on the lower trophic level are investigated in terms of predator-mediated coexistence and predator-induced instability. Competitive interactions between species in the lower trophic level result in indirect mutualism or indirect competition between predators depending on which competitors are preyed upon.  相似文献   

12.
The small mammal community of a coastal site of south-western Mauritania was monitored using live trapping, owl pellet analysis and nocturnal visual censuses. Ten species of rodents and two shrews were recorded. Gerbillid rodents ( Gerbillus nanus, G. gerbillus, G. tarabuli, G. nigeriae and Taterillus arenarius ) were the most prevalent in traps, whereas a relatively large proportion of owl pellets were made up of a murid rodent, Mastomys huberti . The presence of two species of murids ( M. huberti and Arvicanthis niloticus ) in this presaharian environment is made possible by the presence of small patches of green vegetation associated with localized fresh water inputs. The contradiction of results from the sampling methods indicate potential biases in the determination of community composition and relative species abundance. Results are also discussed in estimating the potential role of predation and competition in this small mammal community.  相似文献   

13.
Mt Kilimanjaro is Africa’s highest mountain, and an icon for a country famous for its mammalian fauna. The distribution and abundance of small mammals on the mountain are poorly known. Here we document the distribution of shrews and rodents along an elevational gradient on the southeastern versant of Kilimanjaro. Five sites were sampled with elevational center points of 2000, 2500, 3000, 3500 and 4000 m, using a systematic methodology of standard traps and pitfall lines, to inventory the shrews and rodents of the slope. Sixteen species of mammal were recorded, including 6 shrew and 10 rodent species, and the greatest diversity of both was found at 3000 m, the elevational midpoint of the transect. No species previously unrecorded on Kilimanjaro were observed. Two genera of rodents that occur in nearby mountains (Hylomyscus and Beamys) were not recorded. Myosorex zinki, the only mammal endemic to Mt. Kilimanjaro, which previously was known by only a few specimens collected in the ericaceous or moorland habitat, was found in all but one (the lowest) of the sites sampled, and was one of the most widespread species of small mammal along the gradient. Two shrews (Crocidura allex and Sylvisorex granti) and one rodent (Dendromus insignis) were found throughout the entire transect, with Dendromus being observed at our highest trap point (4240 m). As in similar faunal surveys on other mountains of Tanzania, rainfall influenced the sample success of shrews, but not rodents. Trap success for rodents at 3500 m was notably low. This study contributes further justification for the conservation of the forest habitat of Mt. Kilimanjaro.  相似文献   

14.
华咏乐  谢燕锦  殷宝法  魏万红 《生态学报》2022,42(21):8618-8627
放牧活动对小型啮齿动物种群数量的影响是草原生态系统研究中的热点问题,确定绵羊和小型啮齿动物的营养生态位关系对于草原生态系统的管理具有重要的作用。运用粪便显微分析法分析了内蒙古草原动物生态研究站大型野外围栏内布氏田鼠和绵羊在6—9月份的食谱组成,确定两种草食动物食性选择和营养生态位的变化,从食物利用途径揭示放牧活动对布氏田鼠种群数量的影响方式及二者之间的竞争与共存关系。研究结果表明:围栏中共有23种植物,其中糙隐子草、克氏针茅、羊草和刺藜是围栏中的优势植物;布氏田鼠共取食10种植物,绵羊共取食8种植物,禾本植物为两种动物的主要采食植物。布氏田鼠和绵羊的喜食植物种类都存在季节性变化;除7月外,两种动物的食物多样性与围栏植物多样性有显著的正相关关系,表明动物的食性选择受植物资源变化的影响。布氏田鼠和绵羊具有很高的营养生态位重叠度,除8月(0.691)外,6、7、9月份的营养生态位重叠度均高于0.9,表明二者之间存在激烈的食物竞争;放牧活动极显著地降低了禾本科植物的地上生物量,导致布氏田鼠的食物数量减少;放牧处理下布氏田鼠的喜食植物的物种数和营养生态位宽度(除9月)增加,导致布氏田鼠的食物质量...  相似文献   

15.
Disturbances have long been recognized as important forces for structuring natural communities but their effects on trophic structure are not well understood, particularly in terrestrial systems. This is in part because quantifying trophic linkages is a challenge, especially for small organisms with cryptic feeding behaviors such as insects, and often relies on conducting labor‐intensive feeding trials or extensive observations in the field. In this study, we used stable isotopes of carbon and nitrogen to examine how disturbance (annual biomass harvesting) in tallgrass prairies affected the trophic position, trophic range, and niche space of ants, a widespread grassland consumer. We hypothesized that biomass harvest would remove important food and nesting resources of insects thus affecting ant feeding relationships and trophic structure. We found shifts in the feeding relationships inferred by isotopic signatures with harvest. In particular, these shifts suggest that ants within harvest sites utilized resources at lower trophic levels (possibly plant‐based resources or herbivores), expanded trophic breadth, and occupied different niche spaces. Shifts in resource use following harvest could be due to harvest‐mediated changes in both the plant and arthropod communities that might affect the strength of competition or alter plant nitrogen availability. Because shifts in resource use alter the flow of nutrients across the food web, disturbance effects on ants could have ecosystem‐level consequences through nutrient cycling.  相似文献   

16.
The small‐mammal community of a typical Sudanian savannah area of south‐eastern Senegal was studied by way of intensive sampling at the beginning (July) and at the end (November) of the rainy season. A total of 5931 trapnights and 200 pitfallnights yielded 767 small mammals, including 757 rodents of 12 species, as well as a few shrews and hedgehogs. Accumulation curve indicated that the rodent community was well sampled. Murine rodents were far more numerous than gerbilline rodents, and among them, Mastomys erythroleucus was the dominant species, being caught in high numbers in all habitats. Arvicanthis niloticus and Praomys daltoni were also abundant, followed by Mastomys natalensis and Gerbilliscus guineae. Abundances were high at the beginning of the rainy season when reproductive activity was low in all species. At the end of the rainy season, murine rodents were actively involved in reproduction, while gerbilline rodents were at their lowest density. Significant changes in relative abundance among habitats (including human dwellings) were observed between periods in some species, suggesting seasonal trends in habitat preferences. This may help species coexistence in this species‐rich rodent community, in an area likely to be submitted to significant habitat alterations in the years to come.  相似文献   

17.
Six species of rodents and two species of insectivores, live-trapped on a 1 ha grid over a 27 month period, were studied in relation to microhabitat factors in a dry sub-humid grassland in Kenya. Wet season peaks of small mammal species were followed by low numbers trapped during the dry seasons. Species distributions were correlated with different microhabitat parameters, and the separation of species with apparently similar environmental requirements could be explained largely in terms of current knowledge of the biology of the species. Correlation analyses indicated an ecological separation of two closely-related Mus species and of two Crocidura shrews. Overlap indices were extremely high, ranging from 0.556 to 0.877 for all combinations of pairs of species. It seems likely that neither food nor micro-habitat partitioning completely explains the coexistence of the small mammal species and it is suggested that populations are highly transient, moving from refuge areas into temporarily favourable areas during the wet season.  相似文献   

18.
Small mammals (shrews and rodents) were surveyed along an elevational transect in the Udzungwa Scarp Forest Reserve, in the Udzungwa Mountains, Tanzania. Trap lines and pitfall lines were installed at 600, 910, 1460, and 2000 m a.s.l. In a total of 10341 sample nights (7448 trap-nights and 2893 bucket-nights) 343 specimens (148 shrews, 205 rodents) were captured representing 9 shrew and 14 rodent species for a total of 23 species. While overall species diversity generally increased with elevation, this pattern was not constant for each group sampled. For rodents, both species richness and abundance were lowest at 600 m and greatest at 2000 m a.s.l., and were significantly correlated with elevation. While the highest species number and abundance for shrews was at 2000 m, there was no correlation of these two values with elevation. Rainfall appears to have affected the capture of shrews, but not rodents, and capture success of individual buckets and traps indicated a lack of capture independence. Eastern Arc endemics such asCrocidura desperata Hutterer, Jenkins and Verheyen, 1991 andMyosorex kihaulei Stanley and Hutterer, 2000 were more abundant at 2000 m a.s.l., than at lower elevations. Implications of results of this survey for analyses of future biotic surveys are discussed.  相似文献   

19.
According to classic niche theory, species can coexist in heterogeneous environments by reducing interspecific competition via niche partitioning, e.g. trophic or spatial partitioning. However, support for the role of competition on niche partitioning remains controversial. Here, we tested for spatial and trophic partitioning in feather mites, a diverse and abundant group of arthropods. We focused on the two dominant mite species, Microspalax brevipes and Zachvatkinia ovata, inhabiting flight feathers of the Cory’s shearwater, Calonectris borealis. We performed mite counts across and within primary and tail feathers on free-living shearwaters breeding on an oceanic island (Gran Canaria, Canary Islands). We then investigated trophic relationships between the two mite species and the host using stable isotope analyses of carbon and nitrogen on mite tissues and potential host food sources. The distribution of the two mite species showed clear spatial segregation among feathers; M. brevipes showed high preference for the central wing primary feathers, whereas Z. ovata was restricted to the two outermost primaries. Morphological differences between M. brevipes and Z. ovata support an adaptive basis for the spatial segregation of the two mite species. However, the two mites overlap in some central primaries and statistical modeling showed that Z. ovata tends to outcompete M. brevipes. Isotopic analyses indicated similar isotopic values for the two mite species and a strong correlation in carbon signatures between mites inhabiting the same individual host suggesting that diet is mainly based on shared host-associated resources. Among the four candidate tissues examined (blood, feather remains, skin remains and preen gland oil), we conclude that the diet is most likely dominated by preen gland oil, while the contribution of exogenous material to mite diets is less marked. Our results indicate that ongoing competition for space and resources plays a central role in structuring feather mite communities. They also illustrate that symbiotic infracommunities are excellent model systems to study trophic ecology, and can improve our understanding of mechanisms of niche differentiation and species coexistence.  相似文献   

20.
Invasive crayfish are spreading rapidly across Europe, where they are replacing the native crayfish species and impacting negatively on some other biota. Freshwater crayfish and many benthic fishes share similar habitat and food requirements and hence potentially compete for resources. In this study, we investigated impacts of the introduced signal crayfish (Pacifastacus leniusculus) on fish in stony littoral habitats of two large boreal lakes. We compared the littoral fish community composition and the densities of two common benthic fish species between sites with and without crayfish. To evaluate whether signal crayfish share the same food resources as benthic littoral fish or change their feeding habits, we used mixing models and trophic niche estimates based on analyses of stable isotopes of carbon and nitrogen. Both the community composition of littoral fish and the densities of benthic fish species were similar at sites with and without signal crayfish. Even though stable isotope signatures indicated strong dietary overlap between crayfish and benthic fish, the use of food sources and trophic niche widths of fish were not noticeably different between crayfish sites and non-crayfish sites. Our results suggest that, at current densities, the non-native signal crayfish does not have significant impacts on benthic fish in the stony littoral habitats of large boreal lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号