首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Salt stress imposes a major environmental threat to agriculture, therefore, understanding the basic physiology and genetics of cell under salt stress is crucial for developing any breeding strategy. In the present study, the expression profile of genes involved in ion homeostasis including salt overly sensitive (HvSOS1, HvSOS2, HvSOS3), vacuolar Na+/H+ antiporter (HvNHX1), and H+-ATPase (HVA) along with ion content measurement were investigated in two genotypes of Hordeum vulgare under 300 mM NaCl. The gene expressions were measured in the roots and shoots of a salt-tolerant mutant genotype M4-73-30 and in its wild-type cv. Zarjou by real-time qPCR technique. The critical differences between the salt-tolerant mutant and its wild-type were observed in the expressions of HvSOS1 (105-fold), HvSOS2 (24-fold), HvSOS3 (31-fold), and HVA (202-fold) genes in roots after 6-h exposure to NaCl. The parallel early up-regulation of these genes in root samples of the salt-tolerant mutant genotype indicated induction of Na+/H+ antiporters activity and Na+ exclusion into apoplast and vacuole. The earlier up-regulation of HvSOS1, HVA, and HvNHX1 genes in shoot of the wild-type genotype corresponded to the relative accumulation of Na+ which was not observed in salt-tolerant mutant genotype because of efficient inhibitory role of the root in Na+ transport to the shoot. In conclusion, the lack of similarity in gene expression patterns between the two genotypes with similar genetic background may confirm the hypothesis that mutation breeding could change the ability of salt-tolerant mutant genotype for efficient ion homeostasis via salinity oversensitivity response.  相似文献   

3.
Traditional rice landraces of coastal area in Bangladesh are distinct regarding their phenotype, response to salt stress and yield attributes. With characterization of these landraces, suitable candidate genes for salinity tolerance could be identified to introgress into modern rice varieties. Therefore, the aim of this experiment was to uncover prospective rice landraces tolerant to salinity. Relying on morphological, biochemical and molecular parameters 25 rice genotypes were tested for salt tolerance at germination and seedling stage. At germination stage 0 and 12 dSm?1 salinity were imposed on rice genotypes. Ward’s cluster analysis divided rice genotypes into three clusters (susceptible, moderately tolerant and tolerant) based on the physiological indices. The tolerant rice landraces to salinity were Sona Toly, Nakraji and Komol Bhog. At seedling stage screening was performed following IRRI standard protocol at 12 dSm?1 salinity level. Based on all morphological and biochemical parameters Komol Bhog was identified as the highly salinity tolerant landrace while Bolonga, Sona Toly, Dud Sail, Tal Mugur and Nakraji were found as tolerant to salinity. Molecular characterization using two simple sequence repeats (SSR) markers, viz. RM121 and RM337 displayed Bolonga, Til Kapor, Panbra, Sona Toly, Bina Sail, Komol Bhog, Nakraji, Tilkapur, Gajor Goria and Gota were tolerant landraces through genetic similarity in dendrogram. These identified salt-resistant landraces can be used as promising germplasm resources for breeding salt-tolerant high-yielding rice varieties in future.  相似文献   

4.
5.
6.
The wheat cultivar Shanrong no. 3 (cv. SR3) tolerates both salinity and drought stress more effectively than does its progenitor cultivar Jinan 177 (cv. JN177). When the cultivars are subjected to stress, a number of genes encoding methionine sulfoxide reductase (MSRs) are known to be upregulated in SR3. Here, a set of 12 full length Triticum aestivum MSR (TaMSR) cDNAs have been isolated from cv. SR3. The genes were transcribed in the wheat root, stem, and leaf in plants sampled at various developmental stages. Those induced by salinity and drought harbored known stress-responsive cis elements in their promoter region. The constitutive expression in Arabidopsis thaliana of four MSRs which were induced by salt and drought in microarray assay showed that the product of one (TaMSRA2) heightened the plant’s tolerance to NaCl, methylviologen (MV), and abscisic acid, that of the second (TaMSRA5) enhanced salinity tolerance, that of the third (TaMSRB1.1) increased tolerance to salinity, MV and H2O2, and that of the fourth (TaMSRB5.1) increased tolerance to both salinity and mannitol. The effect of the presence in A. thaliana of TaMSRB1.1 was to suppress the accumulation of reactive oxygen species and to increase the intracellular content of soluble sugars.  相似文献   

7.
8.
9.
Twenty four rhizobial strains were isolated from root nodules of Melilotus, Medicago and Trigonella plants growing wild in soils throughout Egypt. The nearly complete 16S rRNA gene sequence from each strain showed that 12 strains (50 %) were closely related to the Ensifer meliloti LMG6133T type strain with identity values higher than 99.0 %, that 9 (37.5 %) strains were more than 99 % identical to the E. medicae WSM419T type strain, and that 3 (12.5 %) strains showed 100 % identity with the type strain of N. huautlense S02T. Accordingly, the diversity of rhizobial strains nodulating wild Melilotus, Medicago and Trigonella species in Egypt is marked by predominance of two genetic types, E. meliloti and E. medicae, although the frequency of isolation was slightly higher in E. meliloti. Sequencing of the symbiotic nodC gene from selected Medicago and Melilotus strains revealed that they were all similar to those of the E. meliloti LMG6133T and E. medicae WSM419T type strains, respectively. Similarly, nodC sequences of strains identified as members of the genus Neorhizobium were more than 99 % identical to that of N. galegae symbiovar officinalis HAMBI 114.  相似文献   

10.
In most eukaryotic species, centromeres harbor large arrays of tandem repeated satellite DNA sequences. In this study, we report on the genomic distribution of a centromere satellite repeat “MtR3” in Medicago genus and three distantly related genera. Fluorescence in situ hybridization (FISH) results showed MtR3 repeats were detected in the centromere regions in M. truncatula, M. minima, M. edgeworthii, M. ruthenica, M. caerulea, M. sativa, and M. falcata (4×), but no signals were discovered in M. lupulina, M. polymorpha, and M. falcata (2×), Melilotus officinalis, Crotalaria medicaginea, and Trifolium repens. However, sequence analysis showed this MtR3 DNA had genomic distribution in all species and was highly conserved across the entire Medicago genus and three other genera. The conservation and widespread presence suggested MtR3 repeats may play important roles in centromeric function.  相似文献   

11.
12.
Salinity is one of the major abiotic stressors affecting cotton production. The AtNHX1 gene from Arabidopsis thaliana and the TsVP gene from Thellungiella halophila?were co-expressed in cotton (cv. GK35) to improve its salt tolerance. Cotton with overexpressed AtNHX1-TsVP genes had higher emergence rates and higher dry matter accumulation under salt stress in the greenhouse and better emergence rates and survival rates in a saline field compared to the WT. More importantly, the cotton with overexpressed AtNHX1-TsVP genes had higher seed cotton yield in the saline field. The growth of transgenic cotton with overexpression of the AtNHX1-TsVP genes may be related to the accumulation of Na+, K+ and Ca2+ in leaves under salt stress. The accumulation of these cations could improve the ability to maintain ion homeostasis and osmotic potential in plant cells under salt stress, thereby conferring cells with higher relative water content and maintaining higher carbon assimilation capacity. These results reveal that overexpression of AtNHX1-TsVP significantly enhances the tolerance of transgenic cotton to high salinity compared to WT. This study aids efforts of breeding salt-tolerant cotton to achieve the strategy of “westward, eastward, northward” in Chinese cotton production.  相似文献   

13.
14.
15.
16.
One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~?20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl? contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl?. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.  相似文献   

17.
18.
19.
Increase in salinity is predicted to affect plant growth and survival in most arid and semiarid regions worldwide. Mitragyna parvifolia (Roxb.) Korth. is an important medicinal tree species distributed throughout the semiarid regions of India; however, it is facing a threat of its extinction in its natural habitat. We examined the effects of increasing NaCl salinity on two-month-old M. parvifolia seedlings grown in an environment-controlled chamber and exposed to soils of different electrical conductivity (EC) caused by NaCl [0–5 (control), 5–10, 10–15, 15–20, and 20–25 dS m?1)] for 85 days. Seedlings transferred to soil of EC >15 dS m?1 did not survive beyond 1 week. Increase in the Na+ concentration negatively correlated with their height and positively correlated with their water-use efficiency (WUE). However, leaf area, net photosynthetic rate (P N), stomatal conductance, and transpiration rate showed varying correlations and an overall decrease in these parameters compared with the control. At EC of 10–15 dS m?1, the seedling height was reduced by 37% and P N was lowered by 50% compared with those of the control. An increase in the Na+/K+ ratio was observed with increasing salinity. The maximum quantum efficiency of PSII significantly decreased with increasing salinity compared with the control. Our results suggest that the increase in salinity reduced the overall performance of the M. parvifolia seedlings. However, the maintenance of WUE and maximum quantum efficiency of PSII might help M. parvifolia to tolerate NaCl salinity of 15 dS m?1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号