首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental stressors and changes in land use have led to rapid and dramatic species losses. As such, we need effective monitoring programs that alert us not only to biodiversity losses, but also to functional changes in species assemblages and associated ecosystem processes. Ants are important components of terrestrial food webs and a key group in food web interactions and numerous ecosystem processes. Their sensitive and rapid response to environmental changes suggests that they are a suitable indicator group for the monitoring of abiotic, biotic, and functional changes. We tested the suitability of the incidence (i.e. the sum of all species occurrences at 30 baits), species richness, and functional richness of ants as indicators of ecological responses to environmental change, forest degradation, and of the ecosystem process predation on herbivorous arthropods. We sampled data along an elevational gradient (1000–3000 m a.s.l.) and across seasons (wetter and drier period) in a montane rainforest in southern Ecuador. The incidence of ants declined with increasing elevation but did not change with forest degradation. Ant incidence was higher during the drier season. Species richness was highly correlated with incidence and showed comparable results. Functional richness also declined with increasing elevation and did not change with forest degradation. However, a null-model comparison revealed that the functional richness pattern did not differ from a pattern expected for ant assemblages with randomly distributed sets of traits across species. Predation on artificial caterpillars decreased along the elevational gradient; the pattern was not driven by elevation itself, but by ant incidence (or interchangeable by ant richness), which positively affected predation. In spite of lower ant incidence (or ant richness), predation was higher during the wetter season and did not change with forest degradation and ant functional richness. We used path analysis to disentangle the causal relationships of the environmental factors temperature (with elevation as a proxy), season, and habitat degradation with the incidence and functional richness of ants, and their consequences for predation. Our results would suggest that the forecasted global warming might support more active and species-rich ant assemblages, which in turn would mediate increased predation on herbivorous arthropods. However, this prediction should be made with reservation, as it assumes that the dispersal of ants keeps pace with the climatic changes as well as a one-dimensional relationship between ants and predation within a food-web that comprises species interactions of much higher complexity. Our results also suggested that degraded forests in our study area might provide suitable habitat for epigaeic, ground-dwelling ant assemblages that do not differ in incidence, species richness, functional richness, composition, or predation on arthropods from assemblages of primary forests. Most importantly, our results suggest that the occurrence and activity of ants are important drivers of ecosystem processes and that changes in the incidence and richness of ants can be used as effective indicators of responses to temperature changes and of predation within mega-diverse forest ecosystems.  相似文献   

2.

Aim

Many studies demonstrate that climate limits invertebrates along tropical elevational gradients, but we have only a rudimentary understanding of the role of nutrient limitation and climatic seasonality. Here we examined the relationships between ant community structure, nutrient use and season along three undisturbed elevational gradients, each from a different continent.

Location

Ecuador (South America), Papua New Guinea (PNG: Oceania), Tanzania (Africa).

Time period

2011–2014.

Major taxa studied

Ants.

Methods

Along each of the three gradients, we placed six distinct nutrient types (amino acid, sucrose, sucrose + amino acid, lipid, NaCl, H2O). In total, we distributed 2370 baits at 38 sites from 203 m to 3972 m. We used generalized linear models to test for the effects of elevation and season on ant species richness and activity and relative nutrient use. We also tested if changes in ant trophic guilds corresponded to changes in the use of particular nutrients.

Results

Both species richness and activity decreased with elevation along each gradient. However, there were significant interaction effects among elevation, region and season, as ant activity in the dry season was higher in Ecuador and Tanzania but lower in PNG. Relative nutrient use varied among regions: ant preference for some nutrients changed with increasing elevation in Ecuador (decrease in lipid use) and Tanzania (decrease in amino acid and H2O use), while season affected nutrient use in PNG. There were common trends in trophic guilds along the three elevational gradients (e.g. proportional increase of predators), but these did not explain most of the nutrient use patterns.

Main conclusion

While the structure of ant communities changed similarly with elevation, both the seasonal and elevational effects on nutrient use by ants differed between continents. We argue that regional differences in climate and nutrient availability rather than ant functional composition shape nutrient use by ants.  相似文献   

3.
The distribution, diversity, and assembly of tropical insects have long intrigued ecologists, and for tropical ants, can be affected by competitive interactions, microhabitat requirements, dispersal, and availability and diversity of nesting sites. Arboreal twig‐nesting ants are limited by the number of hollow twigs available, especially in intensive agricultural systems. Ant diversity and abundance may shift along elevation gradients, but no studies have examined if the proportion of occupied twigs or richness of arboreal twig‐nesting ants vary with elevation. In coffee agroecosystems, there are over 40 species of arboreal twig‐nesting ants. We examined communities of twig‐nesting ants in coffee plants along an elevational gradient to answer the following questions: (1) Do species richness and colony abundance decline with elevation or show a mid‐elevation peak? (2) Does community composition change with elevation? (3) Is elevation an important predictor of change in ant abundance, richness, and relative abundance of common species? We surveyed 42 10 × 10 m plots in 2013 from 450 to1550 m elevation across a coffee landscape in Chiapas, Mexico. We sampled a total of 2211 hollow coffee twigs, 77.1 percent of which were occupied by one of 28 species of ants. Pseudomyrmex simplex was more abundant in lower elevations, whereas Pseudomyrmex ejectus dominated in high elevations. Species richness and the percent of occupied hollow twigs both peaked at mid‐elevations (800–1050 m). In sum, we found that species richness, abundance, and composition of arboreal twig‐nesting ants shift with elevation. These findings may provide important insights for understanding ant communities in coffee agroecosystems.  相似文献   

4.
Studies on elevation diversity gradients have covered a large number of taxa and regions throughout the world; however, studies of freshwater fish are scarce and restricted to examining their changes along a specific gradient. These studies have reported a monotonic decrease in species richness with increasing elevation, but ignore the high taxonomic differentiation of each headwater assemblage that may generate high β‐diversity among them. Here, we analyzed how fish assemblages vary with elevation among regional elevation bands, and how these changes are related to four environmental clines and to changes in the distribution, habitat use, and the morphology of fish species. Using a standardized field sampling technique, we assessed three different diversity and two structural assemblage measures across six regional elevation bands located in the northern Andes (Colombia). Each species was assigned to a functional group based on its body shape, habitat use, morphological, and/or behavioral adaptations. Additionally, at each sampling site, we measured four environmental variables. Our analyses showed: (1) After a monotonic decrease in species richness, we detected an increase in richness in the upper part of the gradient; (2) diversity patterns vary depending on the diversity measure used; (3) diversity patterns can be attributed to changes in species distribution and in the richness and proportions of functional groups along the regional elevation gradient; and (4) diversity patterns and changes in functional groups are highly correlated with variations in environmental variables, which also vary with elevation. These results suggest a novel pattern of variation in species richness with elevation: Species richness increases at the headwaters of the northern Andes owing to the cumulative number of endemic species there. This highlights the need for large‐scale studies and has important implications for the aquatic conservation of the region.  相似文献   

5.
The Tibetan Plateau has undergone significant climate warming in recent decades, and precipitation has also become increasingly variable. Much research has explored the effects of climate change on vegetation on this plateau. As potential vegetation buried in the soil, the soil seed bank is an important resource for ecosystem restoration and resilience. However, almost no studies have explored the effects of climate change on seed banks and the mechanisms of these effects. We used an altitudinal gradient to represent a decrease in temperature and collected soil seed bank samples from 27 alpine meadows (3,158–4,002 m) along this gradient. A structural equation model was used to explore the direct effects of mean annual precipitation (MAP) and mean annual temperature (MAT) on the soil seed bank and their indirect effects through aboveground vegetation and soil environmental factors. The species richness and abundance of the aboveground vegetation varied little along the altitudinal gradient, while the species richness and density of the seed bank decreased. The similarity between the seed bank and aboveground vegetation decreased with altitude; specifically, it decreased with MAP but was not related to MAT. The increase in MAP with increasing altitude directly decreased the species richness and density of the seed bank, while the increase in MAP and decrease in MAT with increasing altitude indirectly increased and decreased the species richness of the seed bank, respectively, by directly increasing and decreasing the species richness of the plant community. The size of the soil seed bank declined with increasing altitude. Increases in precipitation directly decreased the species richness and density and indirectly decreased the species richness of the seed bank with increasing elevation. The role of the seed bank in aboveground plant community regeneration decreases with increasing altitude, and this process is controlled by precipitation but not temperature.  相似文献   

6.
Aim To examine the species richness of breeding birds along a local elevational gradient and to test the following assumptions of the energy limitation hypothesis: (1) the energy flux through birds is positively correlated with above‐ground net primary productivity, (2) bird density is positively correlated with total energy flux, and (3) bird species richness is positively correlated with bird density. Location An elevational gradient from 1400 to 3700 m on Mt. Yushan, the highest mountain in Taiwan (23°28′30″ N, 120°54′00″ E), with a peak of 3952 m a.s.l. Methods We established 50 sampling stations along the elevational gradient. From March to July 1992, we estimated the density of each bird species using the variable circular‐plot method. Above‐ground net primary productivity was modelled using monthly averages from weather data for the years 1961–90. Results Bird species richness had a hump‐shaped relationship with elevation and with net primary productivity. Bird energy flux was positively correlated with net primary productivity and bird species richness was positively correlated with bird density. The relationship between bird density and energy flux was hump‐shaped, which does not support one assumption of the energy limitation hypothesis. Main conclusions The results supported two essential assumptions of the energy limitation hypothesis. However, when energy availability exceeded a certain level, it could decrease species richness by increasing individual energy consumption, which reduced bird density. Thus, energy availability is a primary factor influencing bird species richness at this scale, but other factors, such as body size, could also play important roles.  相似文献   

7.
Understanding the factors that shape community structure, and whether those factors vary geographically, has a long history in ecology. Because the abiotic environment often varies in predictable ways along elevational gradients, montane systems are ideal to study geographic variation in the determinants of community structure. In this study, we first examined the relative importance of environmental gradients, microclimate, and food resources in driving spatial variation in the structure of detrital communities in forests of the southeastern USA. Then, in order to assess whether the determinants of detrital community structure varied along a climatic gradient, we manipulated resource availability and microclimatic conditions at 15 sites along a well‐studied elevational gradient. We found that arthropod abundance and richness generally declined with increasing elevation, though the shape of the relationship varied among taxa. Overall community composition and species evenness also varied systematically along the climatic gradient, suggesting that broad‐scale variation in the abiotic environment drives geographic variation in both patterns of diversity and community composition. After controlling for the effect of climatic variation along the elevational gradient, food resource addition and microclimate alteration influenced the richness and abundance of some taxa. However, the effect of food resource addition and microclimate alteration on the richness and abundance of arthropods did not vary with elevation. In addition, the degree of community similarity between control plots and either resource‐added or microclimate‐altered plots did not vary with elevation suggesting a consistent influence of microclimate and food addition on detrital arthropod community structure. We conclude that using manipulative experiments along environmental gradients can help tease apart the relative importance and detect the interactive effects of local‐scale factors and broad‐scale climatic variation in shaping communities.  相似文献   

8.
Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas carnivore communities were affected by forbs of small stature, grasses and legumes. Contrasting patterns in the abundance of dominant species imply different levels of resource specialization for dominant herbivores (narrow food spectrum) and carnivores (broad food spectrum). That in turn could heavily affect ecosystem functions mediated by herbivorous and carnivorous arthropods, such as herbivory or biological pest control.  相似文献   

9.
Fungi play important roles in ecosystem processes, and the elevational pattern of fungal diversity is still unclear. Here, we examined the diversity of fungi along a 1,000 m elevation gradient on Mount Nadu, Southwestern China. We used MiSeq sequencing to obtain fungal sequences that were clustered into operational taxonomic units(OTUs) and to measure the fungal composition and diversity. Though the species richness and phylogenetic diversity of the fungal community did not exhibit significant trends with increasing altitude, they were significantly lower at mid-altitudinal sites than at the base. The Bray-Curtis distance clustering also showed that the fungal communities varied significantly with altitude. A distance-based linear model multivariate analysis(DistLM) identified that soil pH dominated the explanatory power of the species richness(23.72%),phylogenetic diversity(24.25%) and beta diversity(28.10%) of the fungal community. Moreover, the species richness and phylogenetic diversity of the fungal community increased linearly with increasing soil pH(P0.05). Our study provides evidence that pH is an important predictor of soil fungal diversity along elevation gradients in Southwestern China.  相似文献   

10.
Rapoport's rule applied to an elevation gradient predicts a positive correlation between elevation ranges and elevation. This is supposed to be caused by the increasing magnitude of the climatic extremes at higher elevations, and thus, it is deduced that species richness should decrease with increasing elevation. The distribution of 614 tree species was used to test Rapoport's elevational rule along a gradient from 100 to 4300 m a.s.l., in the Nepalese Himalaya. The relationship between species richness and elevation was analysed by using generalized linear models (GLM). Generalized additive models (GAM) were used to examine the relationship between elevational range and the elevational mid-point of a species along the gradient. The widest elevation ranges are observed at mid-elevations, and narrow elevation ranges are observed at both ends of the gradient. This does not support Rapoport's elevation rule, as proposed by Stevens. There is a peak in species richness between 900 and 1000 m, and not in the tropical lowland as projected by Rapoport's elevation rule.  相似文献   

11.
Resource variation along abiotic gradients influences subsequent trophic interactions and these effects can be transmitted through entire food webs. Interactions along abiotic gradients can provide clues as to how organisms will face changing environmental conditions, such as future range shifts. However, it is challenging to find replicated systems to study these effects. Phytotelmata, such as those found in carnivorous plants, are isolated aquatic communities and thus form a good model for the study of replicated food webs. Due to the degraded nature of the prey, molecular techniques provide a useful tool to study these communities. We studied the pitcher plant Sarracenia purpurea L. in allochthonous populations along an elevational gradient in the Alps and Jura. We predicted that invertebrate richness in the contents of the pitcher plants would decrease with increasing elevation, reflecting harsher environmental conditions. Using metabarcoding of the COI gene, we sequenced the invertebrate contents of these pitcher plants. We assigned Molecular Operational Taxonomic Units at ordinal level as well as recovering species‐level data. We found small but significant changes in community composition with elevation. These recovered sequences could belong to invertebrate prey, rotifer inquilines, pollinators and other animals possibly living inside the pitchers. However, we found no directional trend or site‐based differences in MOTU richness with elevational gradient. Use of molecular techniques for dietary or contents analysis is a powerful way to examine numerous degraded samples, although factors such as DNA persistence and the relationship with species presence still have to be completely determined.  相似文献   

12.
Whether neutral or deterministic factors structure biotic communities remains an open question in community ecology. We studied the spatial structure of a desert grassland grasshopper community and tested predictions for species sorting based on niche differentiation (deterministic) and dispersal limitation (neutral). We contrasted the change in species relative abundance and community similarity along an elevation gradient (i.e., environmental gradient) against community change across a relatively homogeneous distance gradient. We found a significant decrease in pairwise community similarity along both elevation and distance gradients, indicating that dispersal limitation plays a role in structuring local grasshopper communities. However, the distance decay of similarity was significantly stronger across the elevational gradient, indicating that niche-based processes are important as well. To further investigate mechanisms underlying niche differentiation, we experimentally quantified the dietary preferences of two common species, Psoloessa texana and Psoloessa delicatula, for the grasses Bouteloua eriopoda and Bouteloua gracilis, which are the dominant plants (~75% of total cover) in our study area. Cover of the preferred host plant explained some of the variation in relative abundances of the two focal species, although much variance in local Psoloessa distribution remained unexplained. Our results, the first to examine these hypotheses in arid ecosystems, indicate that the composition of local communities can be influenced by both probabilistic processes and mechanisms based in the natural histories of organisms.  相似文献   

13.
Studies of species diversity patterns across regional environmental gradients seldom consider the impact of habitat type on within-site (alpha) and between-site (beta) diversity. This study is designed to identify the influence of habitat type across geographic and environmental space, on local patterns of species richness and regional turnover patterns of ant diversity in the northeastern United States. Specifically, I aim to 1) compare local species richness in paired open and forested transects and identify the environmental variables that best correlate with richness; and 2) document patterns of beta diversity throughout the region in both open and forested habitat. I systematically sampled ants at 67 sites from May to August 2010, spanning 10 degrees of latitude, and 1000 meters of elevation. Patterns of alpha and beta diversity across the region and along environmental gradients differed between forested and open habitats. Local species richness was higher in the low elevation and warmest sites and was always higher in open habitat than in forest habitat transects. Richness decreased as temperature decreased or elevation increased. Forested transects show strong patterns of decreasing dissimilarity in species composition between sites along the temperature gradient but open habitat transects did not. Maximum temperature of the warmest month better predicted species richness than either latitude or elevation. I find that using environmental variables as key predictors of richness yields more biologically relevant results, and produces simpler macroecological models than commonly used models which use only latitude and elevation as predictors of richness and diversity patterns. This study contributes to the understanding of mechanisms that structure the communities of important terrestrial arthropods which are likely to be influenced by climatic change.  相似文献   

14.
Biodiversity is changing on both global and local scales, motivating research to understand the consequences of these changes for how communities and ecosystems function. Here, we explore the role of life history strategies in mediating biodiversity and ecosystem functioning. In particular, we evaluate how the composition, biomass (% cover), and richness of perennial (persistence ≥ 1 year) and ephemeral (persistence < 1 year) species change along a gradient of increasing seaweed species richness on a rocky shoreline. We show that the majority of biomass is comprised of perennial species, especially where overall richness is low, whereas the majority of species are ephemeral, especially where overall richness is high. We then present and discuss the results of an 18‐month field manipulation quantifying the factorial effects of tidal elevation, wave exposure, herbivore removals, thermal and desiccation stress amelioration, and nutrient additions on perennial versus ephemeral species. In particular, the diversity of ephemeral species was strongly affected, relative to perennial species, by tidal elevation, wave exposure, and herbivory; herbivores reduced diversity of ephemeral species relative to perennials. Relative to perennial cover, ephemeral cover was greater higher on the shore, in more wave‐exposed habitats, and where herbivores were removed, plots were unscreened, and/or nutrients were added. Thus, perennials and ephemerals responded differently to environmental context and experimental manipulation. We compared nitrate uptake and photosynthesis rates of ephemeral and perennial species and found that maximum nitrate uptake and photosynthesis rates of ephemerals were twice as high as those of perennials. These results highlight the disproportionate roles that ephemeral species play in mediating ecosystem‐level processes. In combination with our comparisons of the diversity and cover of perennial and ephemeral species along a biodiversity gradient, these results demonstrate the utility of incorporating life history traits into our efforts to understand the functional consequences of biodiversity change.  相似文献   

15.
Aim (1) To explore the impact of land use, climate and environmental heterogeneity on fern species richness along a complete elevational gradient, and (2) to evaluate the relative importance of the three groups of variables within different elevational intervals. Location A temperate mountain region (55,507 km2) of Italy on the southern border of the European Alps divided into a regular grid of 1476 cells (grain 35.7 km2). Methods We applied multiple regression (spatial and non‐spatial) to determine the relative influence of the three groups of variables on species richness, including variation partitioning at two scales. We considered the whole gradient (all 1476 cells) to explain the overall elevational pattern of species richness, and we grouped the cells into elevational intervals of 500 m in order to evaluate the explanatory power of the predictors within different zones along the gradient. Results Species richness showed a hump‐shaped pattern with elevation, forming a plateau between 800 and 1500 m. The lowest species richness was found in warm and relatively dry disturbed lowlands. Moving upwards, the greatest species richness was found in forest‐dominated mid‐elevations with high environmental heterogeneity. At high elevations dominated by open natural habitats, where temperature and precipitation were relatively low, species richness declined but less sharply than in the lowlands. Although it was impossible to separate the effects of the three groups of predictors along the whole gradient, the analysis of separate elevational intervals shed light on their relative importance. The decline of species richness within lowlands was mainly related to a combined effect of deforestation and low environmental heterogeneity. In the middle part of the gradient, habitat heterogeneity and topographic roughness were positively associated with species richness. The richness decline within high‐elevation areas was related mostly to climatic constraints. Main conclusions Human impact due to land‐use modifications strongly affects the elevational pattern of species richness. It is therefore increasingly important to adopt a multiple‐hypothesis approach, taking anthropogenic effects explicitly into account when describing ecological processes along elevational gradients.  相似文献   

16.
Plant functional characteristics may drive plant species richness effects on ecosystem processes. Consequently, the focus of biodiversity–ecosystem functioning (BEF) experiments has expanded from the manipulation of plant species richness to manipulating functional trait composition. Involving ecophysiological plant traits in the experimental design might allow for a better understanding of how species loss alters ecosystem processes. Here we provide the theoretical background, design and first results of the ‘Trait-Based Biodiversity Experiment’ (TBE), established in 2010 that directly manipulates the trait composition of experimental plant communities.Analysis of six plant traits related to resource acquisition and use were analyzed using principal component analysis of 60 grassland species. The resulting two main axes describe gradients in functional similarity, and were used as the basis for designing plant communities with different functional and species diversity levels. Using such an approach allowed us to manipulate different levels of complementarity in spatial and temporal plant resource acquisition. In contrast to previous biodiversity experiments, the TBE is designed according to more realistic scenarios of non-random species loss along orthogonal axes of species trait dissimilarities. This allows us to tease apart the relative importance of selection and complementarity effects on multiple ecosystem processes, and to mechanistically study the consequences of plant community simplification.  相似文献   

17.
Understanding diversity patterns along environmental gradients and their underlying mechanisms is a major topic in current biodiversity research. In this study, we investigate for the first time elevational patterns of vascular plant species richness and endemism on a long-isolated continental island (Crete) that has experienced extensive post-isolation mountain uplift. We used all available data on distribution and elevational ranges of the Cretan plants to interpolate their presence between minimum and maximum elevations in 100-m elevational intervals, along the entire elevational gradient of Crete (0–2400 m). We evaluate the influence of elevation, area, mid-domain effect, elevational Rapoport effect and the post-isolation mountain uplift on plant species richness and endemism elevational patterns. Furthermore, we test the influence of the island condition and the post-isolation mountain uplift to the elevational range sizes of the Cretan plants, using the Peloponnese as a continental control area. Total species richness monotonically decreases with increasing elevation, while endemic species richness has a unimodal response to elevation showing a peak at mid-elevation intervals. Area alone explains a significant amount of variation in species richness along the elevational gradient. Mid-domain effect is not the underlying mechanism of the elevational gradient of plant species richness in Crete, and Rapoport''s rule only partly explains the observed patterns. Our results are largely congruent with the post-isolation uplift of the Cretan mountains and their colonization mainly by the available lowland vascular plant species, as high-elevation specialists are almost lacking from the Cretan flora. The increase in the proportion of Cretan endemics with increasing elevation can only be regarded as a result of diversification processes towards Cretan mountains (especially mid-elevation areas), supported by elevation-driven ecological isolation. Cretan plants have experienced elevational range expansion compared to the continental control area, as a result of ecological release triggered by increased species impoverishment with increasing elevation.  相似文献   

18.
Some previous studies along an elevational gradient on a tropical mountain documented that plant species richness decreases with increasing elevation. However, most of studies did not attempt to standardize the amount of sampling effort. In this paper, we employed a standardized sampling effort to study tree species richness along an elevational gradient on Mt. Bokor, a table-shaped mountain in southwestern Cambodia, and examined relationships between tree species richness and environmental factors. We used two methods to record tree species richness: first, we recorded trees taller than 4 m in 20 uniform plots (5 × 100 m) placed at 266–1048-m elevation; and second, we collected specimens along an elevational gradient from 200 to 1048 m. For both datasets, we applied rarefaction and a Chao1 estimator to standardize the sampling efforts. A generalized linear model (GLM) was used to test the relationship of species richness with elevation. We recorded 308 tree species from 20 plots and 389 tree species from the general collections. Species richness observed in 20 plots had a weak but non-significant correlation with elevation. Species richness estimated by rarefaction or Chao1 from both data sets also showed no significant correlations with elevation. Unlike many previous studies, tree species richness was nearly constant along the elevational gradient of Mt. Bokor where temperature and precipitation are expected to vary. We suggest that the table-shaped landscape of Mt. Bokor, where elevational interval areas do not significantly change between 200 and 900 m, may be a determinant of this constant species richness.  相似文献   

19.
Insect–plant interactions occur in several ways and have considerable environmental and ecological importance. Many feeding strategies have evolved among herbivorous insects, with host–herbivore systems likely being influenced by trophobionts with ants. We investigated how these interactions vary across elevation gradients by evaluating the structure of the herbivorous insect community and ants associated with Baccharis dracunculifolia at three distinct elevations (800, 1100, and 1400 m a.s.l.) on a mountain in southeastern Brazil. Moreover, we evaluated the diversity and specialisation of interactions between herbivores and host plants along the elevational gradient. We sampled herbivores and ants on 60 plants at each elevation (totalling 180 plant individuals). Herbivore species composition differed among elevations, as did interaction diversity and specialisation. Richness and abundance of chewing insects increased with elevation, while β‐diversity among patches of the host plant was higher at the lowest elevation, probably due to the patchy occurrence of B. dracunculifolia. Richness and abundance of sap‐sucking insects were higher at the intermediate elevation, possibly due to local environmental conditions. We observed a positive relationship between ant and herbivore trophobiont richness on B. dracunculifolia. We found that interactions were more specialised and less diverse at higher elevations compared to the lowest elevation. Changes in vegetation and environmental variables shaped species distributions and their ecological interactions along the elevation gradient. Our study demonstrates that increased elevation changes the structure and patterns of interactions of the herbivore insect guilds associated with the host plant B. dracunculifolia. Ant effects depend on the context, the environment, and the species of ants involved, and are essential for the presence of insect trophobionts.  相似文献   

20.
We report results from a large-scale nutrient fertilization experiment along a “megadiverse” (154 unique species were included in the study) 3,000-m elevation transect in the Peruvian Andes and adjacent lowland Amazonia. Our objectives were to test if nitrogen (N) and phosphorus (P) limitation shift along this elevation gradient, and to determine how an alleviation of nutrient limitation would manifest in ecosystem changes. Tree height decreased with increasing elevation, but leaf area index (LAI) and diameter at breast height (DBH) did not vary with elevation. Leaf N:P decreased with increasing elevation (from 24 at 200 m to 11 at 3,000 m), suggesting increased N limitation and decreased P limitation with increasing elevation. After 4 years of fertilization (N, P, N + P), plots at the lowland site (200 m) fertilized with N + P showed greater relative growth rates in DBH than did the control plots; no significant differences were evident at the 1,000 m site, and plots fertilized with N at the highest elevation sites (1,500, 3,000 m) showed greater relative growth rates in DBH than did the control plots, again suggesting increased N constraint with elevation. Across elevations in general N fertilization led to an increase in microbial respiration, while P and N + P addition led to an increase in root respiration and corresponding decrease in hyphal respiration. There was no significant canopy response (LAI, leaf nutrients) to fertilization, suggesting that photosynthetic capacity was not N or P limited in these ecosystems. In sum, our study significantly advances ecological understanding of nutrient cycling and ecosystem response in a region where our collective knowledge and data are sparse: we demonstrate N limitation in high elevation tropical montane forests, N and P co-limitation in lowland Amazonia, and a nutrient limitation response manifested not in canopy changes, but rather in stem and belowground changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号