首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bovine lactoferrin (bLf) is a natural glycoprotein, and it shows broad-spectrum antimicrobial activity. However, reports on the influences of bLf on probiotic bacteria have been mixed. We examined the effects of apo-bLf (between 0.25 and 128 mg/mL) on both aerobic and anaerobic cultures of probiotics. We found that bLf had similar effects on the growth of probiotics under aerobic or anaerobic conditions, and that it actively and significantly (at concentrations of >0.25 mg/mL) retarded the growth rate of Bifidobacterium bifidum (ATCC 29521), B. longum (ATCC 15707), B. lactis (BCRC 17394), B. infantis (ATCC 15697), Lactobacillus reuteri (ATCC 23272), L. rhamnosus (ATCC 53103), and L. coryniformis (ATCC 25602) in a dose-dependent manner. Otherwise, minimal inhibitory concentrations (MICs) were 128 or >128 mg/mL against B. bifidum, B. longum, B. lactis, L. reuteri, and L. rhamnosus (ATCC 53103). With regard to MICs, bLf showed at least four-fold lower inhibitory effect on probiotics than on pathogens. Intriguingly, bLf (>0.25 mg/mL) significantly enhanced the growth of Rhamnosus (ATCC 7469) and L. acidophilus (BCRC 14065) by approximately 40–200 %, during their late periods of growth. Supernatants produced from aerobic but not anaerobic cultures of L. acidophilus reduced the growth of Escherichia coli by about 20 %. Thus, bLf displayed a dose-dependent inhibitory effect on the growth of most probiotic strains under either aerobic or anaerobic conditions. An antibacterial supernatant prepared from the aerobic cultures may have significant practical use.  相似文献   

2.
Osteosarcoma (OS) is one the most common primary malignancies of the bone in children and young adults with high metastasis. The use of non-toxic naturally derived compounds is one of present strategies in OS therapy to reduce secondary effects and chemo-resistance. Lactoferrin (LF), a transferrin protein derived from milk, currently appears to be an anticancer agent. However, its suppressive effects on OS have not been fully investigated. Therefore, we aimed to examine the molecular mechanism underlying the inhibitory effects of bovine LF (bLF) on OS. OS cell lines (NOS1, U2OS, MG63, and 143B) and an osteoblastic (ST2) were treated with bLF. Effects of bLF on OS-cell proliferation and migration were examined by proliferation and wound-healing assays. Expression levels of low-density-lipoprotein-receptor-related protein 1 (LRP1) and cytokines including interleukin-1 beta (IL-1β), IL-6, and receptor-activator of nuclear factor kappa-Β ligand (RANKL) were measured using western blotting. Osteoclast formation was examined by co-culture of 143B, ST2, and bone marrow cells. We found that bLF down-regulated IL-1β, IL-6, and RANKL expression and suppressed phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 in 143B cells; bLF also drastically suppressed 143B-activated RANKL production in ST2 cells. This may have contributed to the reduction in the number of differentiated osteoclasts. Taken together, these data reveal that bLF down-regulates NF-κB to attenuate proliferation, migration, and bone resorption in OS and the OS-microenvironment. This study provides new findings and the precise underlying mechanisms of the inhibitory effects of bLF on OS. bLF can be a possible therapeutic agent for OS patients.  相似文献   

3.
Structural studies on bovine lactoferrin   总被引:5,自引:0,他引:5  
  相似文献   

4.
Lactoferrin (LF) is an important modulator of the immune response and inflammation. It has also been implicated in the regulation of bone tissue. In our previous study we demonstrated that bovine LF (bLF) reduces LPS-induced bone resorption through a reduction of TNF-α production in vivo. However, it was not known how bLF inhibits LPS-mediated TNF-α and RANKL (receptor activator of nuclear factor κB ligand) production in osteoblasts. In this study we show that bLF impairs LPS-mediated TNF-α and RANKL production. bLF inhibited LPS-mediated osteoclastogenesis via osteoblasts in a co-culture system. Furthermore, bLF pretreatment inhibited LPS-induced NFκB DNA binding activity as well as IκBα and IKKβ (IκB kinase β) phosphorylation. MAP kinase activation was also inhibited by bLF pretreatment. However, bLF pretreatment failed to block the degradation of IRAK1 (interleukin-1 receptor-associated kinase 1), which is an essential event after its activation. Remarkably, we found that bLF pretreatment inhibited LPS-mediated Lys-63-linked polyubiquitination of TNF receptor-associated factor 6 (TRAF6). We also found that bLF is mainly endocytosed through LRP1 (lipoprotein receptor-related protein-1) and intracellular distributed bLF binds to endogenous TRAF6. In addition, bLF inhibited IL-1β- and flagellin-induced TRAF6-dependent activation of the NFκB signaling pathway. Collectively, our findings demonstrate that bLF inhibits NFκB and MAP kinase activation, which play critical roles in chronic inflammatory disease by interfering with the TRAF6 polyubiquitination process. Thus, bLF could be a potent therapeutic agent for inflammatory diseases associated with bone destruction, such as periodontitis and rheumatoid arthritis.  相似文献   

5.
Lactoferrin (Lf), a cationic iron‐binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron‐free bovine lactoferrin (apo‐bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron‐free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric‐bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl‐2, Sirt1, Mcl‐1, and PARP‐1 were modulated by 1.25 μM of apo‐bLf. In the same cell line, apo‐bLf induced apoptosis together with poly (ADP‐ribose) polymerase cleavage, caspase activation, and a significant drop of NAD+. In addition, apo‐bLf–treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo‐bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease.  相似文献   

6.
The purification of bovine lactoferrin, its crystallization at low ionic strength, and preliminary X-ray crystallographic data are reported. The crystals, which grow from a two-phase system, are radiation-stable and suitable for a medium-resolution X-ray analysis. They are orthorhombic, space group P2(1)2(1)2(1), with cell dimensions a = 138.4 A, b = 87.1 A, c = 73.6 A, and one protein molecule in the asymmetric unit.  相似文献   

7.
We tested the hypothesis that rats consuming bovine lactoferrin (bLf) during postnatal development would show better performance of stressful tasks during adolescence. In the first study, we orally administered bLf (750 mg/kg) once daily between postnatal days 16–34. Rats then underwent a battery of behavioral tests: open field (forced exploration of risky environment), light–dark emergence (voluntary exploration of risky environment), baited holeboard (working and reference memory), food neophobia (preference for familiar versus novel food), forced swim (test for antidepressant efficacy), and shuttle-box escape (learning to escape footshock). bLf-supplemented rats showed less exploration of the risky environment, greater preference for the familiar food odor, and faster escape responses. The effect of bLf on forced-swim behavior depended on sex: immobility increased for males and decreased for females. In the next study, we replaced the forced-swim test with an escape-swim test in which rats learned to use a visual cue to locate an escape platform, and we tested the dose response of bLf on this and the shuttle-box escape test, with subjects receiving vehicle or bLf at 500, 1,000, or 2,000 mg/kg. Under this modified testing battery, improvement of escape from footshock was not observed at any dose. However, males, but not females, showed a significant dose-dependent effect of bLf on acquisition of the water-escape task. On average, males receiving a higher dose mastered the task 20–25 % sooner than rats receiving a lower dose or vehicle. These results offer preliminary evidence that bLf supplementation during development can improve subsequent cognitive performance during stress.  相似文献   

8.
9.
Bovine lactoferrin catalyzes the hydrolysis of synthetic substrates (i.e., Z-aminoacyl-7-amido-4-methylcoumarin). Values of Km and kcat for the bovine lactoferrin catalyzed hydrolysis of Z-Phe-Arg-7-amido-4-methylcoumarin are 50 microM and 0.03 s(-1), respectively, the optimum pH value is 7.5 at 25 degrees C. The bovine lactoferrin substrate specificity is similar to that of trypsin, while the hydrolysis rate is several orders of magnitude lower than that of trypsin. The bovine lactoferrin catalytic activity is irreversibly inhibited by the serine-protease inhibitors PMSF and Pefabloc. Moreover, both iron-saturation of the protein and LPS addition strongly inhibit the bovine lactoferrin activity. Interestingly, bovine lactoferrin undergoes partial auto-proteolytic cleavage at positions Arg415-Lys416 and Lys440-Lys441. pKa shift calculations indicate that several Ser residues of bovine lactoferrin display the high nucleophilicity required to potentially catalyze substrate cleavage. However, a definitive identification of the active site awaits further studies.  相似文献   

10.
Changes in autoaggregation ability and surface hydrophobicity of bifidobacteria with addition of bovine lactoferrin in liquid media were investigated. Lactoferrin addition caused loss of autoaggregation ability, disappearance of microscopic clusters and produced consistent turbidity in the cultured medium compared with control. Similar outcomes with addition of bovine lactoferrin hydrolysates (pepsin), bovine transferrin or ovotransferrin suggested that the effect is not lactoferrin-specific. On the other hand, addition of proteins, except bovine transferrin, did not alter surface hydrophobicity. These results indicate that one or more surface components involved in autoaggregation of bifidobacteria are proteins.  相似文献   

11.
Lactoferrin (LF) was identified as a milk protein in 1960. Large-scale manufacturing of bovine LF (bLF) was established more than 20 years ago. Using this commercially available material, research for bLF applications has advanced from basic studies to clinical studies, and bLF has been applied to commercial food products for the last 25 years. During this period, it was found that LF is digested by gastric pepsin to generate a multi-potent peptide, lactoferricin. It was also demonstrated that oral administration of bLF augments host protection against infections via antimicrobial action and immunomodulation of the host. In addition, researchers have demonstrated that oral administration of bLF prevents cancer development. In this review, we look back on 25 years of bLF research and development.  相似文献   

12.
Microencapsulation of live probiotic bacteria   总被引:1,自引:0,他引:1  
Scientific research regarding the use of live bacterial cells for therapeutic purposes has been rapidly growing over the years and has generated considerable interest to scientists and health professionals. Probiotics are defined as essential live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Due to considerable beneficial health effects, these microorganisms are increasingly incorporated into the dairy products; however, many reports demonstrated their poor survival and stability. Their survival in the gastrointestinal (GI) tract is also questionable. To overcome these problems, microencapsulation techniques are currently receiving considerable attention. This review describes the importance of live probiotic bacterial microencapsulation using an alginate microparticulate system and presents the potentiality of various coating polymers such as chitosan and polylysine for improving the stability of this microencapsulation.  相似文献   

13.
Herein we review commercial bovine lactoferrin quality issues by describing an example of industrial production, the current status of global quality standardization, and quality-activity concerns for further discussion. Morinaga Milk Industry has been industrially producing bovine lactoferrin in Milei GmbH, Germany, since 1989. We delineate its production and quality as an example of safe and high-quality manufacturing. Currently, global standardization in the quality of bovine lactoferrin is progressing through Novel Food and GRAS in the EU and USA, respectively. Novel Food was applied or notified to seven lactoferrin manufacturers and GRAS was notified to three manufacturers, two of which are for infant use and one is for adult use, by the end of 2017. The specifications of these regulations are relatively high, including more than 95% lactoferrin purity in protein, which means that such companies can supply relatively high-grade lactoferrin. There appear to be several concerns regarding lactoferrin quality affecting activities, including contamination of lipopolysaccharide (LPS) and angiogenin, purity, and degradation of lactoferrin sample. Although LPS is immunologically toxic when invading the body, it is distributed normally in foods and the gut. However, an industrial lactoferrin sample may contain LPS at a maximum LPS/lactoferrin molecule ratio?=?1/1724, which means 99.9% of the lactoferrin molecule is LPS-free. It is difficult to speculate that LPS contained in a lactoferrin sample affects its activities. Finally in order to achieve good and reproducible results, we make proposals to researchers a use of high-grade lactoferrin, careful storage, and indication the manufacturers’ names and specifications in the paper.  相似文献   

14.
Degradation of lactoferrin by periodontitis-associated bacteria   总被引:1,自引:0,他引:1  
Abstract The degradation of human lactoferrin by putative periodontopathogenic bacteria was examined. Fragments of lactoferrin were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and measured by densitometry. The degradation of lactoferrin was more extensive by Porphyromonas gingivalis and Capnocytophaga sputigena , slow by Capnocytophaga ochracea , Actinobacillus actinomycetemcomitans and Prevotella intermedia , and very slow or absent by Prevotella nigrescens , Campylobacter rectus, Campylobacter sputorum, Fusobacterium nucleatum ssp. nucleatum, Capnocytophaga gingivalis, Bacteroides forsythus and Peptostreptococcus micros . All strains of P. gingivalis tested degraded lactoferrin. The degradation was sensitive to protease inhibitors, cystatin C and albumin. The degradation by C. sputigena was not affected by the protease inhibitors and the detected lactoferrin fragments exhibited electrophoretic mobilities similar to those ascribed to deglycosylated forms of lactoferrin. Furthermore a weak or absent reactivity of these fragments with sialic acid-specific lectin suggested that they are desialylated. The present data indicate that certain bacteria colonizing the periodontal pocket can degrade lactoferrin. The presence of other human proteins as specific inhibitors and/or as substrate competitors may counteract this degradation process.  相似文献   

15.
Adherence is an essential and prerequisite step for the colonization of mucosal surfaces by enterotoxigenic Escherichia coli (ETEC). We studied the effect of bovine lactoferrin (BLF) on the adherence of ETEC to human epithelial cells in vitro, and to intestinal mucosa of ICR germfree mice in vivo. In the in vitro study, BLF was found to inhibit the adherence of ETEC. This adhesion-inhibiting activity of BLF was found to lessen with decreasing BLF concentration, but the data obtained suggest a positive inhibitory effect of BLF against the adhesion of ETEC cells. In the in vivo study, the counts of adherent bacteria in various sections of the intestinal tract (duodenum, jejunoileum, and large intestine) were lower in the BLF group than in the control group, suggesting the possible action of BLF as an intestinal tract adherence-blocking agent with regards to ETEC.  相似文献   

16.
International Microbiology - Mastitis is one of the most important causes of loss of cattle production, burdening producers due to the increased cost of milk production and decreased herd...  相似文献   

17.
It was shown that the association of probiotic bacteria of the genuses Bacillus and Cellulomonas form biolayers on the surface of beet marc particles. The positive effect of a fodder additive that contained the biolayer on the basis of a phytomatrix on the growth and development of young rabbits was shown. Feeding of animals with a mixed fodder that contained 0.1% preparation resulted in stimulation of digestion of all components of the food. Among other components of the mixed fodder, cellulose was digested most effectively. An increase in the biomass of symbiotic bacteria and enzymatic activity in the blindgut chymus was also observed. The positive nitrogen balance demonstrated an increase in the nitrogen content in animals and a decrease of its losses with excretion. The mechanism of response of the rabbit’s organism to introduction of the complex probiotic preparation into the digestive tract is discussed.  相似文献   

18.
Lactoferrin has long been recognized for its antimicrobial properties, initially attributed primarily to iron sequestration. It has since become apparent that interaction between the host and bacteria is modulated by a complex series of interactions between lactoferrin and bacteria, lactoferrin and bacterial products, and lactoferrin and host cells. The primary focus of this review is the interaction between lactoferrin and bacteria, but interactions with the lactoferrin-derived cationic peptide lactoferricin will also be discussed. We will summarize what is currently known about the interaction between lactoferrin (or lactoferricin) and surface or secreted bacterial components, comment on the potential physiological relevance of the findings, and identify key questions that remain unanswered.  相似文献   

19.
Lactoferrin (LF) is a component of saliva and is suspected to be a defense factor against oral pathogens including Streptococcus mutans and Candida albicans. Periodontitis is a very common oral disease caused by periodontopathic bacteria. Antimicrobial activities and other biological effects of LF against representative periodontopathic bacteria, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia, have been widely studied. Association of polymorphisms in LF with incidence of aggressive periodontitis and the role of LF in the gingival crevicular fluid as a marker of periodontitis severity have also been reported. Periodontopathic bacteria reside as a biofilm in supragingival and subgingival plaque. Our recent study indicated that LF exhibits antibacterial activity against planktonic forms of P. gingivalis and P. intermedia at higher concentrations, and furthermore, LF effectively inhibits biofilm formation and reduces the established biofilm of these bacteria at physiological concentrations. A small-scale clinical study indicated that oral administration of bovine LF reduces P. gingivalis and P. intermedia in the subgingival plaque of chronic periodontitis patients. LF seems to be a biofilm inhibitor of periodontopathic bacteria in vitro and in vivo.  相似文献   

20.
In the present study, lactoferrin binding to bifidobacteria and detection of lactoferrin-binding protein in membrane fractions of several bifidobacteria have been demonstrated. This is the first report showing the binding of bovine lactoferrin to four Bifidobacterium spp. (B. infantis, B. breve, B. bifidum, B. longum) incubated with biotinylated lactoferrin and fluorescein conjugated-avidin and observed under an inverted confocal laser scanning microscope. Fluorescence staining showed lactoferrin binding at the pole of the bacterial cells. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the membrane fraction of Bifidobacterium spp. by far western blotting technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on the results of this and previously reported studies, we suggest that binding of lactoferrin to Bifidobacterium longum is strain-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号