首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Vegetation structure and species composition of tropical ecosystems were studied through nine transects at Veerapuli and Kalamalai reserve forests in the Western Ghats of Tamil Nadu, India. Species diversity, dominance, species richness and evenness indices of plant communities and also population structure of woody plants were enumerated. A total of 244 species (183 genera and 76 families) were recorded. Species richness (number of species) were 82,142 and 96 species per 0.3 ha respectively for the study areas of low-elevation forest (LEF), mid-elevation forest (MEF) and high elevation forest (HEF). Species diversity indices were greater in MEF compared to the other two forests except juveniles. In contrast, greater dominance value indices were recorded in LEF than other forests. Density and basal area of the MEF were twice greater than the LEF, while HEF showed greater tree density and low basal area when compared to LEF. The stem density and species richness (number of species) decreased with increased size classes of trees observed in the present study indicated good regeneration status. Population structure of juveniles and seedlings also reflects good regeneration status. Terminalia paniculata (IVI of 99.9) and Hopea parviflora (IVI of 103.8) were dominant tree species respectively in LEF and MEF whereas in HEF Agrostistachys meeboldii (63.65), Cullenia excelsa (63.67) and Drypetes oblongifolia (39.67) share the dominance. Past damage (anthropogenic perturbation) may be one of the reasons for single species dominance in LEF and MEF. Occurrence of alien species such as Eupatorium odoratum and Ageratum conyzoides also indicated the past disturbance in LEF. The variations in plant diversity and population structure are largely due to anthropogenic perturbation and other abiotic factors.  相似文献   

2.
A botanical inventory and diversity of trees, shrubs (≥5 cm diameter at breast height [dbh]), herbs, climbers and lianas was assessed in plots (154) of 20 × 5 m in Mt. Marsabit forest, northern Kenya. We recorded 52 species of trees and shrubs, twelve species of herbs and six species of climbers and lianas. They belonged to 35 families and 64 genera. Rubiaceae was the richest family with nine species followed by Euphorbiaceae (six), Oleaceae (five), Rutaceae (four), Capparaceae, Labiatae and Leguminosae (three each). The rest of the families were represented by one or two species. Rinorea convallarioides (Bak.f.) Eyles ssp. marsabitensis Grey‐Wilson (Violaceae), an endemic species, and Drypetes gerrardii Hutch. (Euphorbiaceae), were the two most important species, accounting for more than third of the combined importance value. Species diversity indices were 2.735 (Shannon–Wiener), 0.88 (Simpson's) and 0.296 (Evenness). There was a strong evidence of disturbance arising from anthropogenic and wildlife foraging activities. This inventory has affirmed Mt. Marsabit forest as a unique habitat for several endemic, rare, threatened or vulnerable plant species, which should be conserved.  相似文献   

3.
Aim This study investigates how estimated tree aboveground biomass (AGB) of tropical montane rain forests varies with elevation, and how this variation is related to elevational change in floristic composition, phylogenetic community structure and the biogeography of the dominant tree taxa. Location Lore Lindu National Park, Sulawesi, Indonesia. Methods Floristic inventories and stand structural analyses were conducted on 13 plots (each 0.24 ha) in four old‐growth forest stands at 1050, 1400, 1800 and 2400 m a.s.l. (submontane to upper montane elevations). Tree AGB estimates were based on d.b.h., height and wood specific gravity. Phylogenetic diversity and biogeographical patterns were analysed based on tree family composition weighted by AGB. Elevational trends in AGB were compared with other Southeast Asian and Neotropical transect studies (n = 7). Results AGB was invariant from sub‐ to mid‐montane elevation (309–301 Mg ha?1) and increased slightly to 323 Mg ha?1 at upper montane elevation. While tree and canopy height decreased, wood specific gravity increased. Magnoliids accounted for most of the AGB at submontane elevations, while eurosids I (including Fagaceae) contributed substantially to AGB at all elevations. Phylogenetic diversity was highest at upper montane elevations, with co‐dominance of tree ferns, Podocarpaceae, Trimeniaceae and asterids/euasterids II, and was lowest at lower/mid‐montane elevations, where Fagaceae contributed > 50% of AGB. Biogeographical patterns showed a progression from dominant tropical families at submontane to tropical Fagaceae (Castanopsis, Lithocarpus) at lower/mid‐montane, and to conifers and Australasian endemics at upper montane elevations. Cross‐continental comparisons revealed an elevational AGB decrease in transects with low/no presence of Fagaceae, but relatively high AGB in montane forests with moderate to high abundance of this family. Main conclusions AGB is determined by both changes in forest structure and shifts in species composition. In our study, these two factors traded off so that there was no net change in AGB, even though there were large changes in forest structure and composition along the elevational gradient. Southeast Asian montane rain forests dominated by Fagaceae constitute important carbon stocks. The importance of biogeography and species traits for biomass estimation should be considered by initiatives to reduce emissions from deforestation and forest degradation (REDD) and in taxon choice in reforestation for carbon offsetting.  相似文献   

4.
物种多样性的空间分布格局和维持机制是群落生态学的基本问题。为了探讨海南尖峰岭地区物种多样性空间分布格局的尺度效应, 以海南尖峰岭热带山地雨林60 hm2样地为研究对象, 分析了物种丰富度、物种多度、Shannon-Wiener指数、Simpson指数以及Pielou均匀度指数随6个空间取样尺度(5 m × 5 m、10 m × 10 m、20 m × 20 m、40 m × 40 m、100 m ×100 m、200 m × 200 m)的变化。结果表明: 相比Simpson指数和Pielou均匀度指数, 物种丰富度、多度以及Shannon-Wiener指数具有更为明显的空间尺度效应; 物种丰富度的方差随取样尺度增加呈现单峰分布特征, 并且在20 m × 20 m尺度上达到最大值, 而物种多度的方差随取样尺度的增加而增大; 物种丰富度和多度的正相关性随着取样尺度的增加逐渐减小甚至消失, 这可能与随取样尺度增加生境异质性增加有关; 取样尺度对3个物种多样性指数空间分布的影响可能与研究区域内稀有种的组成有关。  相似文献   

5.
Andean montane butterflies have unique diversity patterns in each mountain system, and the knowledge on how their community diversity changes at local scale has potential important implications on designing regional conservation strategies. The multiplicative partition of the diversity and the effective number of species provides a useful tool in studying the patterns of diversity in heterogeneous Andean cloud forest habitats. Here, we evaluated diversity in three nearby sites in the Andean Central Cordillera of Colombia, two hillsides – on western (Cauca canyon) and eastern (Aburrá valley) slopes – and one hilltop. We collected a total of 1039 individuals belonging to 55 species of butterflies. Alpha diversity differs between hillsides and the hilltop. Beta diversity in the three areas show differences in richness (q0) and in diversity of the order of magnitude of q1 and q2, with the major differences between hillsides and hilltop. This study shows important differences in butterfly (Nymphalidae) assemblages on a local scale, and suggests that any efforts directed towards comprehensive protection of a given area in a heterogeneous mountain landscape must be focused on the complete forested area, not being limited to a hilltop or to a single hillside.  相似文献   

6.
7.
8.
The effects of human impact and environmental heterogeneity on the tree species diversity were assessed in 20 fragments of tropical montane seasonal forest in southeastern Brazil. Previous surveys of the tree community, soils and topography of the fragments provided the bulk of the data. The diversity parameters used were the means of species richness, Shannon diversity (H′), and Pielou evenness (J′) obtained from “bootstrap” sub-samplings of 1,000 trees. Morphometric variables obtained for the fragments included total, edge, and inner areas. Investigation forms were used to survey the history of human interventions and prepare an impacts matrix containing scores assigned to assess the extent, severity and duration of selected impacts. Scores for overall environmental impacts were obtained from the ordination scores produced by a multivariate analysis of the impacts matrix. A multivariate analysis of the standard deviations of soil variables was used to identify the variable which contributed most to soil heterogeneity. The same procedure was repeated for the variables related to topography and ground-water regime. The three species diversity parameters were related to the proportions of edges, the overall impacts scores, and the standard deviations of two selected soil and topographic variables. The species diversity in the fragments increased with increasing heterogeneity of both soil chemical properties and topographic features, and decreased with increasing proportion of forest edges. The evenness component of species diversity also increased with increasing severity of overall environmental impacts. This probably occurred because the 20 fragments did not include highly disturbed forests in the range and the intermediate disturbance effect on species diversity was therefore detected.  相似文献   

9.

Aim

(i) To determine whether area and connectivity of temporary ponds can predict plant species diversity, and the diversity and abundance of different plant life histories; (ii) To explore whether pond connectivity with the river prior to river regulation predicts better plant diversity patterns than current pond connectivity, suggestive of possible effects of connectivity loss.

Location

Eastern Carpathian Mountains, Romania, Europe.

Methods

We fitted linear and generalized linear models (LM and GLM) to examine whether pond area and current distance from the Olt River predict plant species richness, Shannon diversity and relative cover of different social behaviour types and overall plant species richness and Shannon diversity. Using historical maps, we measured pond distance from the river ca. 60 years before the Olt River was regulated, and we refitted the LM and GLM models using pond area and past distance from the river as independent variables.

Results

Total plant species richness increased with pond area, and it decreased with the distance from the river, but total plant Shannon diversity index was affected, positively, only by pond area. The strength of responses to pond area and connectivity of species richness, Shannon diversity and relative cover varied across the different social behaviour types. Past and current distances between ponds and riverbeds had similar effects on plant diversity, with some evidence for stronger effect of the present connectivity on specialist species Shannon diversity and a weaker effect on disturbance tolerants, generalists and competitors.

Main Conclusions

Pond area and connectivity with the landscape are important predictors of the diversity of plant life history strategies, and therefore, useful tools in pond conservation. Consistent species richness and Shannon diversity responses of wetland specialists to pond area and connectivity make this life history type well suited for monitoring pond condition.  相似文献   

10.
Aim We assessed the effects of latitude, altitude and climate on the alpha diversity of rain forest trees in the Western Ghats (WG) of India. We tested whether stem densities, dominance, the prevalence of rarity, and the proportion of understorey trees are significantly correlated with alpha diversity. Location The WG is a chain of mountains c. 1600 km in length, running parallel to the western coast of the Indian peninsula from above 8° N to almost 21° N latitude. Wet forests occur as a narrow strip in regions with heavy rainfall. Methods To assess tree diversity we used data from 40 small plots, < 1 ha in area, where all trees ≥ 3.18 cm d.b.h. had been inventoried. These plots were distributed across 7 latitudinal degrees and at elevations between 200 and 1550 m. Fisher's alpha was used as a measure of diversity. For each plot, the proportion of trees belonging to the understorey, the proportion of trees belonging to the most abundant species in the plot, as a measure of dominance, and the proportionate representation of singletons, as a measure of rarity, were estimated, and correlated with Fisher's alpha, elevation, rainfall and seasonality. Results Annual rainfall and seasonality increased towards the north, but were not significantly correlated. Tree diversity increased significantly with decreasing seasonality. Tree diversity was not significantly correlated with stem density or with the proportion of understorey tree species, but was significantly correlated with tree dominance and rarity. Dominance increased and rarity significantly decreased with increasing seasonality. Main conclusions This study demonstrates that seasonality influences rain forest tree diversity in the WG of India. The relationship between alpha diversity, dominance and rarity lends correlative support for the Janzen–Connell pest pressure hypothesis.  相似文献   

11.
Harboring many range‐restricted and specialized species, high elevation tropical cloud forests are diverse habitats represented in many protected areas. Despite this, many such areas receive little practical protection from deforestation and land conversion. Moreover, montane species may be more sensitive to climate change owing to various factors affecting community assembly across elevational gradients. Few studies have used annual monitoring to assess how biological communities in cloud forests may be shifting in response to habitat or climate change or assessed the efficacy of protected areas in buffering these effects. We analyzed avifaunal community trends in a 10‐yr dataset of constant‐effort bird point‐count data in a cloud forest national park in Honduras, Central America. We found that species richness and diversity increased at higher elevations, but decreased at lower elevations. Abundances of most dietary and forest‐dependency groups exhibited similar trends, and many key cloud forest species shifted upslope and/or increased in abundance. Taken together, our results suggest that the avian community is moving upslope and species composition is changing. Results for species richness and diversity were similar when only nondegraded transects were considered, suggesting the role of climate change as an important driver. At lower elevations, however, many species may be negatively affected by increased habitat degradation, favoring species with low forest dependency. Continued habitat conversion and climate change could push the cloud forest bird community further upslope, potentially resulting in increased competition, mortality, and even extirpation of some species. Increased protection is unlikely to mitigate the effects of climate change.  相似文献   

12.
13.
Over the past 150 years, Brazil has played a pioneering role in developing environmental policies and pursuing forest conservation and ecological restoration of degraded ecosystems. In particular, the Brazilian Forest Act, first drafted in 1934, has been fundamental in reducing deforestation and engaging private land owners in forest restoration initiatives. At the time of writing (December 2010), however, a proposal for major revision of the Brazilian Forest Act is under intense debate in the National Assembly, and we are deeply concerned about the outcome. On the basis of the analysis of detailed vegetation and hydrographic maps, we estimate that the proposed changes may reduce the total amount of potential areas for restoration in the Atlantic Forest by approximately 6 million hectares. As a radically different policy model, we present the Atlantic Forest Restoration Pact (AFRP), which is a group of more than 160 members that represents one of the most important and ambitious ecological restoration programs in the world. The AFRP aims to restore 15 million hectares of degraded lands in the Brazilian Atlantic Forest biome by 2050 and increase the current forest cover of the biome from 17% to at least 30%. We argue that not only should Brazilian lawmakers refrain from revising the existing Forest Law, but also greatly step up investments in the science, business, and practice of ecological restoration throughout the country, including the Atlantic Forest. The AFRP provides a template that could be adapted to other forest biomes in Brazil and to other megadiversity countries around the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号