首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
Aim We analyse the proximate causes of the large variation in flowering periodicity among four tropical dry forests (TDF) and ask whether climatic periodicity or biotic interactions are the ultimate causes of flowering periodicity. Location The four TDFs in Guanacaste (Costa Rica), Yucatan, Jalisco and Sonora (Mexico) are characterized by a 5–7 month long dry season and are located along a gradient of increasing latitude (10–30°N). Methods To dissect the differences in flowering periodicity observed at the community level, individual tree species were assigned to ‘flowering types’, i.e. groups of species with characteristic flowering periods determined by similar combinations of environmental flowering cues and vegetative phenology. Results Large variation in the fraction of species and flowering types blooming during the dry and wet season, respectively, indicates large differences in the severity of seasonal drought among the four forests. In the dry upland forests of Jalisco, flowering of leafless trees remains suppressed during severe seasonal drought and is triggered by the first rains of the wet season. In the other forests, leaf shedding, exceptional rainfall or increasing daylength cause flowering of many deciduous species at various times during the dry season, well before the summer rains. The fraction of deciduous species leafing out during the summer rains and flowering when leafless during the dry season is largest in the Sonoran TDF. Main conclusions In many wide‐ranging species the phenotypic plasticity of flowering periodicity is large. The distinct temporal separation of spring flowering on leafless shoots and subsequent summer flushing represents a unique adaptation of tree development to climates with a relatively short rainy season and a long dry season. Seasonal variation in rainfall and soil water availability apparently constitutes not only the proximate, but also the ultimate cause of flowering periodicity, which is unlikely to have evolved in response to biotic adaptive pressures.  相似文献   

2.
Summary Effects of variation in fire season on flowering of forbs and shrubs were studied experimentally in two longleaf pine forest habitats in northern Florida, USA. Large, replicated plots were burned at different times of the year, and flowering on each plot was measured over the twelve months following fire. While fire season had little effect on the number of species flowering during the year following fire, fires during the growing season decreased average flowering duration per species and increased synchronization of peak flowering times within species relative to fires between growing seasons. Fires during the growing season also increased the dominance of fall flowering forbs and delayed peak fall flowering. Differences in flowering resulting from variation in fire season were related to seasonal changes in the morphology of clonal forbs, especially fall-flowering composites. Community level differences in flowering phenologies indicated that timing of fire relative to environmental cues that induced flowering was important in determining flowering synchrony among species within the ground cover of longleaf pine forests. Differences in fire season produced qualitatively similar effects on flowering phenologies in both habitats, indicating plant responses to variation in the timing of fires were not habitat specific.  相似文献   

3.
In the wet-dry tropics of northern Australia, temperatures are high and stable year-round but monsoonal rainfall is highly seasonal and variable both annually and spatially. Many features of reproduction in vertebrates of this region may be adaptations to dealing with this unpredictable variation in precipitation, notably by (i) using direct proximate (rainfall-affected) cues to synchronize the timing and extent of breeding with rainfall events, (ii) placing the eggs or offspring in conditions where they will be buffered from rainfall extremes, and (iii) evolving developmental plasticity, such that the timing and trajectory of embryonic differentiation flexibly respond to local conditions. For example, organisms as diverse as snakes (Liasis fuscus, Acrochordus arafurae), crocodiles (Crocodylus porosus), birds (Anseranas semipalmata) and wallabies (Macropus agilis) show extreme annual variation in reproductive rates, linked to stochastic variation in wet season rainfall. The seasonal timing of initiation and cessation of breeding in snakes (Tropidonophis mairii) and rats (Rattus colletti) also varies among years, depending upon precipitation. An alternative adaptive route is to buffer the effects of rainfall variability on offspring by parental care (including viviparity) or by judicious selection of nest sites in oviparous taxa without parental care. A third type of adaptive response involves flexible embryonic responses (including embryonic diapause, facultative hatching and temperature-dependent sex determination) to incubation conditions, as seen in squamates, crocodilians and turtles. Such flexibility fine-tunes developmental rates and trajectories to conditions--especially, rainfall patterns--that are not predictable at the time of oviposition.  相似文献   

4.
Reproductive patterns of tropical and temperate plants are usually associated with climatic seasonality, such as rainfall or temperature, and with their phylogeny. It is still unclear, however, whether plant reproductive phenology is influenced by climatic factors and/or phylogeny in aseasonal subtropical regions. The plant reproductive phenology of a subtropical rain forest in northern Taiwan (24°45′ N, 121°35′ E) was monitored at weekly intervals during a 7‐yr period (2002–2009). The flowering patterns of 46 taxa and fruiting patterns of 26 taxa were examined and evaluated in relation to climatic seasonality, phylogenetic constraints, and different phenophases. Our results indicated that most of the studied species reproduced annually. Additionally, both community‐wide flowering and fruiting patterns exhibited distinct annual rhythms and varied little among years. The community flowering peak matched seasonal changes in day length, temperature, and irradiance; while the community fruiting peak coincided with an increase in bird richness and the diet‐switching of resident omnivorous birds. In addition, phylogenetically closely related species tended to reproduce during the same periods of a year. Neither the mean flowering dates nor seasonal variation in solar radiation, however, was related to the fruit development times. Our results indicate the importance of abiotic, biotic, and evolutionary factors in determining the reproductive phenology in this subtropical forest.  相似文献   

5.
Henk Wolda 《Oecologia》1989,81(4):437-442
Summary Activity seasons of tropical organisms often start, on the average, at or about the beginning of the rainy or dry seasons. The hypothesis that the onset or cessation of the wet season provides the seasonal cues necessary of the initiation of the activity season of some tropical organisms is tested with data on Panamanian cicadas. Seasonal adult activity patterns are described for cicada species in Panama, mostly from Barro Colorado Island (BCI), some from Las Cumbres. In all species the correlation between the timing of the beginning and the end of the cicada season was low and not significant, so that the actual beginning data of a cicada season in a particular year had little or no predictive value for the end date. Seven out of eleven species on BCI started their average activity season at the average beginning of the dry season (one species) or rainy season (six species). Nevertheless, in 13 years, correlations between the start or end of the cicada seasons and that of the meteorological seasons were low and not significant. At best, the beginning and end of the rains played a minor role as seasonal cues governing cicada emergence or the termination of the cicada season. It is speculated that photoperiod might be a major seasonal cue governing emergence, through its effects on the host plants.  相似文献   

6.
We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology.  相似文献   

7.
PETER A. COTTON 《Ibis》2007,149(1):135-142
Many ecological theories predict a close match between food resources and the number and diversity of consumers but comparatively few empirical studies have simultaneously quantified seasonal variation in an entire assemblage and its resource base. Hummingbirds provide an excellent model system to examine this relationship because their primary food resource is conspicuous and easily quantified. Over a 2-year period I used mist-netting and direct observation of birds feeding at flowering plants to record the abundance of 16 species of hummingbird in lowland Amazonian rainforest. Although there was very little annual variation in temperature and daylength, both rainfall and river level showed significant seasonal variation. At the study site this resulted in an annual flood lasting for over 5 months, inundating much of the area to a depth of 2 m. I recorded marked seasonal patterns in flowering phenology and arthropod abundance, which correlated with river level and rainfall, respectively. In turn, these seasonal fluctuations in resource abundance correlated very closely with variation in hummingbird species richness, hummingbird abundance and the total biomass of hummingbirds in the assemblage. This study is the first to demonstrate tracking of seasonal resource variation in equatorial rainforest and provides evidence that hummingbirds are sensitive to resource availability at spatial and temporal scales much greater than previously documented.  相似文献   

8.
I applied a comparative approach to reveal correlated patterns of variation in phenology and seed production in four populations of two annual grasses Hordeum spontaneum and Avena sterilis, sampled in the same environments distributed along an aridity gradient in Israel. The steep aridity gradient in Israel represents two parallel clines of environmental productivity (annual rainfall) and predictability (variation in amount and timing of annual rainfall) that is likely to induce similar responses in natural plant populations distributed along the gradient, if (1) selection is strong, (2) species share the same ecological niche, and (3) there is genetic variation for ecologically important traits. I found in plants of both species (1) ultimate advance in onset of flowering, and (2) more but smaller seeds, with increasing aridity. The broad sense heritabilities of onset of flowering, seed size and seed yield in both species were very high, moderate and low, respectively. It appears that the observed adaptive complex of traits have evolved in both species in response to this specific array of environments.  相似文献   

9.
Tropical dry forests occupy more area and are more endangered than rainforests, yet their regeneration ecology has received less study and is consequently poorly understood. We recorded the flowering and fruiting phenology of a tropical dry forest in Jamaica over a period of 26 mo within ten 15 × 15‐m plots. Community‐wide recruitment reached a maximum in the wet season, whereas no recruitment occurred during the dry season. We observed a unimodal peak in rainfall and fruit production, and the periodicity and intensity of seed production were significantly correlated with rainfall seasonality (the optimal time for germination). Flowering at the community and system levels lagged behind a significant increase and subsequent decrease in rainfall by 7 and 3 mo, respectively, indicating that the dominant factor controlling flowering periodicity is the passage of the major (4‐mo long) rainy season and changes in soil moisture conditions. Fruiting lagged behind flowering by 2 mo and a significant increase in fruiting occurred 2 mo prior to a significant increase in rainfall. At the population level, a correspondence analysis identified a major dichotomy in the patterns of flowering and fruiting between species and indicated two broad species groups based on their time of peak fruiting and the number of times they were in fruit. These were either individuals which were usually in peak fruit 1–2 mo prior to the start of the major rainy season or those that were in fruit more or less continuously throughout the year with no peak fruiting time. This study supports the view that seasonal variation in rainfall and hence soil water availability constitutes both the proximate and the ultimate cause of flowering periodicity in tropical dry forests.  相似文献   

10.
Individuals breeding in seasonal environments are under strong selection to time reproduction to match offspring demand and the quality of the post-natal environment. Timing requires both the ability to accurately interpret the appropriate environmental cues, and the flexibility to respond to inter-annual variation in these cues. Determining which cues are linked to reproductive timing, what these cues are predicting and understanding the fitness consequences of variation in timing, is therefore of paramount interest to evolutionary and applied ecologists, especially in the face of global climate change. We investigated inter-annual relationships between climatic variation and the timing of reproduction in Canada’s largest breeding population of Arctic common eiders (Somateria mollissima) in East Bay, Nunavut. Warmer spring temperatures predicted both earlier mean annual laying dates and the earlier ice-free conditions required by ducklings for post-natal growth. Warmer springs had higher variation in this temperature cue, and the population laying distribution became increasingly positively-skewed in warmer summers, potentially indicating that more low-quality females had the opportunity to commence laying in warmer years. Females that timed laying to match duckling hatching just prior to fully ice-free conditions obtained the highest duckling survival probability. Inter-annual data on repeated breeding attempts revealed that the individuals examined show a similar degree of laying flexibility in response to climatic variation; however, there was significant individual variation in the absolute timing of laying within an average year. This work sheds light on how reproductive timing is related to and influenced by variation in local climate and provides vital information on how climate-related variation in reproductive timing influence a fitness measure in an Arctic species. Results are especially relevant to future work in polar environments given that global climatic changes are predicted to be most intense at high latitudes.  相似文献   

11.
Seasonal tropical forests exhibit a great diversity of leaf exchange patterns. Within these forests variation in the timing and intensity of leaf exchange may occur within and among individual trees and species, as well as from year to year. Understanding what generates this diversity of phenological behaviour requires a mechanistic model that incorporates rate-limiting physiological conditions, environmental cues, and their interactions. In this study we examined long-term patterns of leaf flushing for a large proportion of the hundreds of tree species that co-occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide variation in deciduousness and tested competing hypotheses regarding the timing and triggers of leaf flushing in seasonal tropical forests. We developed metrics to quantify the nature of deciduousness (its magnitude, timing and duration) and its variability among survey years and across a range of taxonomic levels. Tree species varied widely in the magnitude, duration, and variability of leaf loss within species and across years. The magnitude of deciduousness ranged from complete crown loss to no crown loss. Among species that lost most of their crown, the duration of deciduousness ranged from 2 to 21 weeks. The duration of deciduousness in the majority of species was considerably shorter than in neotropical forests with similar rainfall periodicity. While the timing of leaf flushing varied among species, most (∼70%) flushed during the dry season. Leaf flushing was associated with changes in photoperiod in some species and the timing of rainfall in other species. However, more than a third of species showed no clear association with either photoperiod or rainfall, despite the considerable length and depth of the dataset. Further progress in resolving the underlying internal and external mechanisms controlling leaf exchange will require targeting these species for detailed physiological and microclimatic studies.  相似文献   

12.
Animals need to adjust reproductive decisions to environmental seasonality. In contrast to species from the well-studied temperate zones, little is known for tropical birds about the environmental cues that stimulate reproductive activity and the physiological mechanisms that regulate reproduction. I am investigating the environmental and endocrine mechanisms that underlie the timing of reproduction in spotted antbirds from the near-equatorial Panamanian rainforest and in small ground finches from the equatorial arid Galápagos islands. Spotted antbirds live in a fairly predictable seasonal environment and show regular changes in gonad sizes and some reproductive hormones. Despite the small annual variation in photoperiod close to the equator, these birds can measure slight photoperiodic increases and use it to initiate reproductive activity. Spotted antbirds also respond to seasonal changes in food availability, which allows them to flexibly adjust gonad growth to environmental conditions. Testosterone is involved in regulating song and aggressive behavior in these year-round territorial birds, although it can remain at low plasma levels throughout the year. In contrast, small ground finches exposed to a rather unpredictable climate on Galápagos appear to grow their gonads whenever heavy rains fall and have regressed gonads during other times of the year. The lack of a physiological preparation for the breeding season and their response to short-term cues related to rainfall indicate a striking flexibility in the regulation of breeding in small ground finches. I suggest that tropical birds can serve as model systems to study the physiological adaptations to different environments. Unraveling the neuroendocrine mechanisms behind the flexibility in reproductive timing will clarify whether differences found between temperate and tropical birds represent variations of the same basic mechanism or instead reflect a fundamental divergence in physiological control systems.  相似文献   

13.
Gabriela S. Adamescu  Andrew J. Plumptre  Katharine A. Abernethy  Leo Polansky  Emma R. Bush  Colin A. Chapman  Luke P. Shoo  Adeline Fayolle  Karline R. L. Janmaat  Martha M. Robbins  Henry J. Ndangalasi  Norbert J. Cordeiro  Ian C. Gilby  Roman M. Wittig  Thomas Breuer  Mireille Breuer‐Ndoundou Hockemba  Crickette M. Sanz  David B. Morgan  Anne E. Pusey  Badru Mugerwa  Baraka Gilagiza  Caroline Tutin  Corneille E. N. Ewango  Douglas Sheil  Edmond Dimoto  Fidèle Baya  Flort Bujo  Fredrick Ssali  Jean‐Thoussaint Dikangadissi  Kathryn Jeffery  Kim Valenta  Lee White  Michel Masozera  Michael L. Wilson  Robert Bitariho  Sydney T. Ndolo Ebika  Sylvie Gourlet‐Fleury  Felix Mulindahabi  Colin M. Beale 《Biotropica》2018,50(3):418-430
We present the first cross‐continental comparison of the flowering and fruiting phenology of tropical forests across Africa. Flowering events of 5446 trees from 196 species across 12 sites and fruiting events of 4595 trees from 191 species across 11 sites were monitored over periods of 6 to 29 years and analyzed to describe phenology at the continental level. To study phenology, we used Fourier analysis to identify the dominant cycles of flowering and fruiting for each individual tree and we identified the time of year African trees bloom and bear fruit and their relationship to local seasonality. Reproductive strategies were diverse, and no single regular cycle was found in >50% of individuals across all 12 sites. Additionally, we found annual flowering and fruiting cycles to be the most common. Sub‐annual cycles were the next most common for flowering, whereas supra‐annual patterns were the next most common for fruiting. We also identify variation in different subsets of species, with species exhibiting mainly annual cycles most common in West and West Central African tropical forests, while more species at sites in East Central and East African forests showed cycles ranging from sub‐annual to supra‐annual. Despite many trees showing strong seasonality, at most sites some flowering and fruiting occurred all year round. Environmental factors with annual cycles are likely to be important drivers of seasonal periodicity in trees across Africa, but proximate triggers are unlikely to be constant across the continent.  相似文献   

14.
For many ectothermic animals, the acquisition, storage and depletion of lipids is integral to successfully coping with reduced metabolic rates and activity levels associated with cold, winter periods. In fish, lipids are crucial for overwinter survival and successful reproduction. The timing and magnitude of seasonal lipid storage should therefore vary predictably among fish with different thermal preferences and spawn times. Small‐ and large‐bodied fish should also face different constraints associated with season that influence lipid cycling. However, much work to date has been species‐ and location‐specific and a general conceptual model for the seasonal energy budgets of freshwater fish is lacking. Here, we conducted a comprehensive literature review of seasonal lipid levels in freshwater fishes. We predicted that warm and cool water species would be more likely to demonstrate peak lipid levels during warm months than cold water species, and expected a larger magnitude of annual lipid cycling in warm and cool water compared to cold water fish. We also expected dampened lipid cycling in larger fish due to their lower mass‐specific metabolic rates. Observed patterns in the timing and magnitude of lipid storage contradicted our prediction because lipid cycling was widespread across species, despite thermal guild, with peak lipid levels commonly occurring during warmer months, even in cold water fish. For body size effects, larger bodied fish species had dampened seasonal lipid cycling, as predicted. We developed a conceptual framework describing how the ‘scope’ for variation in annual lipid cycling changes with body size both among and within species in order to guide future work. Together, our findings suggest that energy acquired during warm months is broadly important for overwinter survival and reproduction in fishes, and provide a new perspective on the differential constraints and physiological responses to seasonality among freshwater fish. Improving our understanding of these dynamics is especially pressing given that a changing global climate is anticipated to alter existing seasonal signals.  相似文献   

15.
Successful reproduction of flowering plants requires the appropriate timing of the floral transition, as triggered by environmental and internal cues and as regulated by multiple signaling modules. Among these modules, microRNAs (miRNAs), the evolutionarily conserved regulators, respond to environmental and internal cues and network with other integrators of flowering cues. Moreover, miRNA signaling modules affect the timing of flowering in many plant species. Here, we comprehensively review recent progress in understanding the function of miRNAs and their target genes in flowering time regulation in diverse plant species. We focus on the role of the miRNA-target gene modules in various flowering pathways and their conserved and divergent functions in flowering plants. We also examine, in depth, the crosstalk by sequential activity of miR156 and miR172, two of the most-studied and evolutionarily conserved miRNAs in both annual and perennial plants.  相似文献   

16.
Global surface temperature has increased markedly over the last 100 years. This increase has a variety of implications for human societies, and for ecological systems. One of the most obvious ways ecosystems are affected by global climate change is through alteration of organisms’ developmental timing (phenology). We used annual botanical surveys that documented the first flowering for an array of species from 1976 to 2003 to examine the potential implications of climate change for plant development. The overall trend for these species was a progressively earlier flowering time. The two earliest flowering taxa (Galanthus and Crocus) also exhibited the strongest shift in first flowering. We detected a significant trend in climate suggesting higher temperatures in winter and spring over the sampling interval and found a significant relationship between warming temperatures and first flowering time for some species. Although 60% of the species in our study flowered earlier over the sampling interval, the remaining species exhibited no statistically detectable change. This variation in response is ostensibly associated with among-species variation in the role of climate cues in plant development. Future work is needed to isolate specific climate cues, and to link plant phenology to the physiological processes that trigger plant development.  相似文献   

17.
Patterns of seed germination in Californian serpentine grassland species   总被引:3,自引:0,他引:3  
S. L. Gulmon 《Oecologia》1992,89(1):27-31
Summary Germination of nine Californian serpentine annual species and one perennial grass was examined as a function of soil and litter cover and seasonal timing of rainfall. Germination responses varied with the date of moisture application, and the patterns of variation differed among species. Germination occurred in waves over time, but in most of the species, virtually all the seeds had germinated by December. These results indicate that yearly climatic variation can affect species composition and competitive relationships among species through the germination process. Soil and litter cover produced little or no effect except for the smallest-seeded species.  相似文献   

18.
19.
Changes in the strength and position of the Intertropical Convergence Zone (ITCZ) are an important component of climate variability in the tropical Atlantic. The Cariaco Basin, located on the northern margin of Venezuela, is sensitive to tropical Atlantic climate change and its sediments provide a record of past ITCZ behavior. Today, the Cariaco Basin experiences two distinct seasons that reflect the annual migration of the Atlantic ITCZ. Between January and March, when the ITCZ lies south of the equator, northeasterly trade winds sit directly over Cariaco Basin and strong coastal upwelling and dry conditions dominate. Beginning in June-July, as the ITCZ moves north, local rainfall reaches a maximum and the upwelling diminishes or disappears. Here we summarize new and previously published data on the river-derived terrigenous fraction of Cariaco Basin sediments, as well as comparisons to other paleoclimate records, which together suggest a coherent climatologic response in the tropical Atlantic triggered by a pattern of ITCZ migration that mimics the seasonal cycle. During periods of cooler North Atlantic SSTs, on time-scales ranging from the Little Ice Age to the Younger Dryas to the cold stadials of the last glacial, decreased detrital delivery to Cariaco Basin from local rivers suggests a southward shift in the mean latitudinal position of the ITCZ. During warm interstadials and periods of Holocene and deglacial warmth, northward shifts in ITCZ position and its belt of convective rainfall are inferred from increased detrital delivery to the basin. Whether the rapid shifts in ITCZ position and precipitation recorded by Cariaco Basin sediments and other regional records reflect a response to forcing originating in the high latitude Atlantic or to forcing potentially sourced in the tropics is a key question yet to be fully answered.  相似文献   

20.
Both mass (as a measure of body reserves) during breeding and adult survival should reflect variation in food availability. Those species that are adapted to less seasonally variable foraging niches and so where competition dominates during breeding, will tend to have a higher mass increase via an interrupted foraging response, because their foraging demands increase and so become more unpredictable. They will then produce few offspring per breeding attempt, but trade this off with higher adult survival. In contrast, those species that occupy a more seasonal niche will not gain mass because foraging remains predictable, as resources become superabundant during breeding. They can also produce more offspring per breeding attempt, but with a trade-off with reduced adult survival. We tested whether the then predicted positive correlation between levels of mass gained during seasonal breeding and adult survival was present across 40 species of tropical bird measured over a 10-year period in a West African savannah. We showed that species with a greater seasonal mass increase had higher adult survival, controlling for annual mass variation (i.e. annual variation in absolute food availability) and variation in the timing of peak mass (i.e. annual predictability of food availability), clutch size, body size, migratory status and phylogeny. Our results support the hypothesis that the degree of seasonal mass variation in birds is probably an indication of life history adaptation: across tropical bird species it may therefore be possible to use mass gain during breeding as an index of adult survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号