首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The Indo‐Australian region was formed by the collision of the Australian and Asian plates, and its fauna largely reflects this dual origin. Lydekker's and Wallace's Lines represent biogeographic transition boundaries between biotas although their permeability through geological times was rarely assessed. Here, we explore the evolutionary history of flightless weevils of the tribe Celeuthetini in this geologically highly complex region. We generated a DNA sequence data set of 2236 bp comprising two nuclear and two mitochondrial markers for 62 species of the Indo‐Australian tribe Celeuthetini. We used Bayesian Inference and Maximum Likelihood to reconstruct the first molecular phylogeny of the group. Based on this phylogenetic tree, we employed the program BioGeoBEARS to infer the biogeographical history of Celeuthetini in the region. The group's radiation begun east of Wallace's Line, probably during the mid‐Eocene. We unveil multiple transgressions of Lydekker's and Wallace's Lines mostly during the Miocene with a significant role of founder‐event speciation. The phylogeny of Celeuthetini is geographically highly structured with the first lineages occurring in New Guinea and the Moluccas, and a deep divergence between two clades largely confined to Sulawesi and their respective sister clades of the Lesser Sunda Islands. Wallace's Line was crossed once from Sulawesi and three times from the Lesser Sunda Islands to Java whilst Lydekker's Line was crossed once from New Guinea to the Moluccas. Although this beetle group shows extensive local diversification with little dispersal, the biogeographical demarcations of the Australasian region appear to have been rather porous barriers to dispersal.  相似文献   

2.
Wallace's Line or its variants divide the Malay Archipelago or Malesia into a western and eastern area, but is this suitable for plant distributions? Indeed, all boundaries satisfactorily divide Malesia into two parts, stopping far more species east or west of a line than disperse over the boundary. However, phenetic analyses (principal components analysis, nonmetric multidimensional scaling analysis and the unweighted pair group method with arithmetic mean) of 7340 species distributions revealed a stronger partitioning of Malesia into three instead of two regions: the western Sunda Shelf minus Java (Malay Peninsula, Sumatra, Borneo), central Wallacea (Philippines, Sulawesi, Lesser Sunda Islands, Moluccas, with Java), and the eastern Sahul Shelf (New Guinea). Java always appears to be part of Wallacea, probably because of its mainly dry monsoon climate. The three phytogeographic areas equal the present climatic division of Malesia. An everwet climate exists on the Sunda and Sahul Shelves, whereas most of Wallacea has a yearly dry monsoon. During glacial maxima, the Sunda and Sahul Shelves became land areas connected with Asia and Australia, respectively, whereas sea barriers remained within Wallacea. Consequently, the flora of the two shelves is more homogeneous than the Wallacean flora. Wallacea is a distinct area because it comprises many endemic, drought tolerant floristic elements. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 531–545.  相似文献   

3.
The Malay civet Viverra tangalunga Gray, 1832 is a fairly large viverrid that has a wide distribution in both the Sundaic and Wallacea regions of Southeast Asia. We investigated the genetic diversity of V. tangalunga by analysing the mitochondrial DNA of 81 individuals throughout its range in order to elucidate the evolutionary history of this species and to test the hypotheses of natural dispersal and/or potential human introductions to some islands and regions. Our phylogenetic analyses revealed that V. tangalunga has a low matrilinear genetic diversity and is poorly structured geographically. Borneo is likely to have served as the ancestral population source from which animals dispersed during the Pleistocene. Viverra tangalunga could have naturally dispersed to Peninsular Malaysia, Sumatra, and Belitung, and also to several other Sunda Islands (Bangka, Lingga, and Bintang in the Rhio Archipelago), and to Palawan, although there is possible evidence that humans introduced V. tangalunga to the latter islands. Our results strongly suggested that V. tangalunga was transported by humans across Wallace's Line to Sulawesi and the Moluccas, but also to the Philippines and the Natuna Islands. Our study has shown that human‐mediated dispersal can be an important factor in understanding the distribution of some species in this region. © 2014 The Linnean Society of London  相似文献   

4.
Wallace's Line, located in the heart of the Indo-Australian archipelago, has historically been hypothesized to strongly inhibit dispersal. Taxa crossing this barrier are confronted with different biota of Asian or Australian origin, respectively, but the extent to which these conditions have affected the evolution of the colonizing lineages remains largely unknown. We examined the potential correlations of body size, lifestyle and biogeographical distribution in the weevil genus Trigonopterus. These beetles are highly diverse both on foliage and in litter east of Wallace's Line but occur exclusively in leaf litter in the west. Based on a comprehensive, dated phylogeny of 303 species, we inferred nine crossing events of Wallace's Line, all from east to west. Five previously foliage-dwelling lineages changed their lifestyle to leaf litter habitats after crossing this barrier. Our results indicate that dispersal is not more likely in edaphic lineages, but rather that abiotic and/or biotic factors may be responsible for the exclusive leaf litter habitat of Trigonopterus in Sundaland. This includes differences in climate, and the different predatory faunas of Australia-New Guinea, Wallacea and Sundaland. A mimicry complex in New Guinea with Trigonopterus species as presumable model may be of relevance in this context.  相似文献   

5.
Aim To develop a comprehensive explanation for the biological diversity of Southeast Asia, especially in the Wallacea and Sundaland regions. This study focuses on a group of arachnids, mite harvestmen, which are thought to be an extremely old group of endemic animals that have been present in the region since most of its land supposedly formed part of the northern rim of the supercontinent Gondwana. Location Eastern Himalayas, Thai‐Malay Peninsula, Sumatra, Borneo, Java, Sulawesi, and New Guinea. Methods  Approximately 5.6 kb of sequence data were obtained from 110 South‐east Asian Cyphophthalmi specimens. Phylogenetic analyses were conducted under a variety of methods and analytical parameters, and the optimal tree was dated using calibration points derived from fossil data. Event based and paralogy‐free subtree biogeographical analyses were conducted. Results The Southeast Asian family Stylocellidae was recovered as monophyletic, arising on what is now the Thai‐Malay Peninsula and diversifying into three main clades. One clade (Meghalaya, here formally placed in Stylocellidae) expanded north as far as the eastern Himalayas, a second clade entered Borneo and later expanded back across the Sundaland Peninsula to Sumatra, and a third clade expanded out of Borneo into the entire lower part of Sundaland. Molecular dating suggested that Stylocellidae separated from other Cyphophthalmi 295 Ma and began diversifying 258 Ma, and the lineage that inhabits mostly Borneo today began diversifying between 175 and 150 Ma. Main conclusions The topology and molecular dating of our phylogenetic hypothesis suggest that Stylocellidae originated on Gondwana, arrived in Southeast Asia via the Cimmerian palaeocontinent, and subsequently diversified north, then south. Their present distribution in the Indo‐Malay Archipelago is explained largely by a diversification over the Sundaland Peninsula before western Sulawesi departed and the peninsula was extensively inundated.  相似文献   

6.
The Malay civet (Viverra tangalunga) is found throughout Southeast Asia, but there have been very few studies on its natural history and ecology. We present here the results from the first radio telemetry study of this species on Peninsular Malaysia and compared our findings to similar studies on Borneo and Sulawesi. From August 2004 to August 2006, we captured 11 Malay civets in Krau Wildlife Reserve and radio-tracked seven adults (four males and three females). The mean weight of males (6.6 kg) was significantly higher than females (5.8 kg). Both sexes on Peninsular Malaysia were larger than their counterparts on Borneo and Sulawesi. There was no significant difference between the mean sizes of male and female home ranges on Peninsular Malaysia; the mean home range size for both sexes was 143 ha (95% MCP), which was larger than the mean range size recorded on Borneo and Sulawesi. We found that the Malay civet is a solitary, territorial species on Peninsular Malaysia: mean range overlap was 15% for males and 0% for females, and the home range of each male overlapped one or two females. Malay civets were mainly nocturnal, with some periods of rest during the night; daytime rest sites were within dense ground cover. Lowland forest is an essential habitat for this species; although Malay civets were sometimes found in plantations, they did not venture far from forested habitat.  相似文献   

7.
Aim To test the potential of two contrasting biogeographical hypotheses (‘Indian/Pacific Ocean Basin’ vs. ‘Wallace's Line’) to explain the distribution of genetic diversity among populations of a marine fish in Southeast Asia. Location The marine waters of Asia and Southeast Asia: from India to Japan, and east to the Indonesian islands of Sulawesi and Flores. Methods We sequenced a 696 base pair fragment of cytochrome b DNA of 100 individuals of Hippocampus trimaculatus Leach 1814 (three‐spot seahorse), obtained from across its range. We tested our hypotheses using phylogenetic reconstructions and analyses of molecular variance. Results Significant genetic divergence was observed among the specimens. Two distinct lineages emerged that diverged by an average of 2.9%. The genetic split was geographically associated, but surprisingly it indicated a major east–west division similar to the terrestrial Wallace's Line (ΦST = 0.662, P < 0.001) rather than one consistent with an Indian‐Pacific ocean basin separation hypothesis (ΦST = 0.023, P = 0.153). Samples from east of Wallace's Line, when analysed separately, however, were consistent with an Indian/Pacific Ocean separation (ΦST = 0.461, P = 0.005). The degree of genetic and geographical structure within each lineage also varied. Lineage A, to the west, was evolutionarily shallow (star‐like), and the haplotypes it contained often occurred over a wide area. Lineage B to the east had greater genetic structure, and there was also some evidence of geographical localization of sublineages within B. Main conclusions Our results indicate that the genetic diversity of marine organisms in Southeast Asia may reflect a more complex history than the simple division between two major ocean basins that has been proposed by previous authors. In particular, the east–west genetic division observed here is novel among marine organisms examined to date. The high haplotype, but low nucleotide diversity to the west of Wallace's Line is consistent with post‐glacial colonization of the Sunda Shelf. Additional data are needed to test the generality of these patterns.  相似文献   

8.
To mark A.R. Wallace's 200th birthday, we review the direct and indirect contributions he made to our understanding of the Indo-Australian Archipelago's biogeography. He is widely known for his field research (1854–1862) and his 1863 boundary line separating the Oriental and Australasian faunal realms (between Bali and Lombok, Borneo and Sulawesi, and the Philippines and the Moluccas). Notably, though, he never accepted Huxley's ‘Wallace Line’ proposal (1868), whose northern part runs between the main Philippine islands and the Palawan Group to the west. Furthermore, in 1910, which was 3 years prior to his demise, he transferred Sulawesi's fauna to the Oriental realm. In 1924, Merrill introduced the ‘Wallacea’ transition zone. Although the label is today widely used to denote a sub-region within the Indo-Australian Archipelago between Wallace's 1863 line and Lydekker's 1896 line (first presented by Darlington in 1957), the western boundary was originally based on Huxley's line, and thus included the Philippine islands minus the Palawan group. Most biogeographers appear to be unaware of Merrill and his intention. Finally, recent attempts to define the faunal break have not led to a consensus view, despite the huge increase in primary data plus the application of modern analytical techniques. This reflects the complexities and diversity of the region's faunal distribution patterns, plus the differences in the ways that researchers choose to process their data.  相似文献   

9.
Aim Island mammals have featured prominently in models of the evolution of body size. Most of these models examine size evolution across a wide range of islands in order to test which island characteristics influence evolutionary pathways. Here, we examine the mammalian fauna of a single island, Borneo, where previous work has detected that some mammal species have evolved a relatively small size. We test whether Borneo is characterized by smaller mammals than adjacent areas, and examine possible causes for the different trajectories of size evolution between different Bornean species. Location Sundaland: Borneo, Sumatra, Java and the Malay/Thai Peninsula. Methods We compared the mammalian body size frequency distributions in the four areas to examine whether the large mammal fauna of Borneo is more depauperate than elsewhere. We measured specimens belonging to 54 mammal species that are shared between Borneo and any of the other areas in order to determine whether there is an intraspecific tendency for Bornean mammals to evolve small body size. Using data on diet, body size and geographical ranges we examine factors that are thought to influence body size. Results Borneo has fewer large mammals than the other areas, but this is not statistically significant. Large Bornean mammals are significantly smaller than their conspecifics in the other regions, while there are no differences between the body sizes of mammals on Sumatra, Java and the Malay/Thai Peninsula. The finding that large mammals show the greatest size difference between Borneo and elsewhere contrasts with some models of size evolution on islands of different areas. Diet does not correlate with the degree of size reduction. Sunda region endemics show a weaker tendency to be small on Borneo than do widespread species. Main conclusions We suggest that soil quality may drive size evolution by affecting primary productivity. On Borneo, where soils are generally poor in nutrients, this may both limit biomass and cause mammals to be reduced in body size. We hypothesize that widespread species respond to low resource abundance by reducing in size, while endemic elements of the fauna have had longer to adjust to local conditions by altering their behaviour, physiology and/or ecology, and are thus similar in size across the region.  相似文献   

10.
Tropical high mountain forests in Lore Lindu National Park, Sulawesi, Indonesia, were described by their floristic composition and the importance of tree families (Family importance values, FIV), based on tree inventories conducted on 4 plots (each 0.24 ha) in old-growth forest stands at c. 1800 and 2400 m a.s.l. (mid- and upper montane elevations). To identify general patterns and regional peculiarities of the forests in the SE Asian and SW Pacific context, the biogeography of the tree species was analysed using distribution records. Out of the total of 87 tree species, only 18 species were found at both elevational zones. The discovery of new species and new distribution records (28% of the data set) highlights the deficiencies in the taxonomic and distribution data for Sulawesi. Sulawesi endemism rate was 20%. In the mid-montane Fagaceae–Myrtaceae forests, Lithocarpus spp. (Fagaceae) were overall important (4 spp. occupying around half of the total basal area) and the Myrtaceae the most species rich (8 spp.), thus showing typical features of Malesian montane forests. The upper montane conifer-Myrtaceae forest contained several high mountain tree taxa and showed affinity to the forests of New Guinea. The mountain flora comprised both eastern and western Malesian elements, with the nearest neighbouring islands Borneo and Maluku both sharing species with Sulawesi, reflecting the complex palaeogeography of the island. A separate analysis showed the mid-montane forest to possess greatest biogeographical affinity to Borneo/western Malesia, and the upper montane forest had a number of typical elements of Papuasia/eastern Malesia and the Phillipines, which may be a result of historical patterns in land connection and the emergence of mountain ranges.  相似文献   

11.
Aim The tunicate Molgula manhattensis has a disjunct amphi‐Atlantic distribution and a recent history of world‐wide introductions. Its distribution could be the result of regional extinctions followed by post‐glacial recolonization, or anthropogenic dispersal. To determine whether the North Atlantic distribution of M. manhattensis is natural or human‐mediated, we analysed mtDNA cytochrome c oxidase subunit I (COI) sequence variation in individuals from cryptogenic and introduced ranges. Location North Atlantic Europe and America; Black Sea; San Francisco Bay; Osaka Bay. Methods Nuclear 18S rDNA sequences were used to resolve phylogenetic relationships and mtDNA COI sequences for phylogeographic analyses. Results Phylogenetic analyses confirmed that M. manhattensis and M. socialis, which are frequently confused, are distinct species. MtDNA haplotype diversity was nearly three times higher with deeper relationships among haplotypes on the North‐east American coast than in Europe. Diversity declined from south to north in America but not in Europe. In areas of known introductions (Black Sea, Japan, San Francisco Bay), M. manhattensis showed variable levels of haplotype diversity. Medium‐to‐high‐frequency haplotypes originating from the North‐west Atlantic were present in two locations of known introductions, but not in Europe. Private haplotypes were found on both sides of the Atlantic and in introduced populations. The mismatch distribution for the North‐east Atlantic coast indicates a recent expansion. Main conclusions Molgula manhattensis is native in North‐east America. However, whether it was introduced or is native to Europe remains equivocal. Additional sampling might or might not reveal the presence of putative private European haplotypes in America. The low European diversity may be explained by low effective population size and a recent expansion, or by low propagule pressure of anthropogenic introduction. Absence of medium‐to‐high‐frequency American haplotypes in Europe may be the result of exclusive transport from southern ports, or long‐term residence. These arguments are ambiguous, and M. manhattensis remains cryptogenic in Europe.  相似文献   

12.
Global change is driving a massive rearrangement of the world's biota. Trajectories of distributional shifts are shaped by species traits, the recipient environment and driving forces with many of the driving forces directly due to human activities. The relative importance of each in determining the distributions of introduced species is poorly understood. We consider 11 Australian Acacia species introduced to South Africa for different reasons (commercial forestry, dune stabilization and ornamentation) to determine how features of the introduction pathway have shaped their invasion history. Projections from species distribution models (SDMs) were developed to assess how the reason for introduction influences the similarity between climatic envelopes in native and alien ranges. A lattice model for an idealized invasion was developed to assess the relative contribution of intrinsic traits and introduction dynamics on the abundance and extent over the course of simulated invasions. SDMs show that alien populations of ornamental species in South Africa occupy substantially different climate space from their native ranges, whereas species introduced for forestry occupy a similar climate space in native and introduced ranges. This may partly explain the slow spread rates observed for some alien ornamental plants. Such mismatches are likely to become less pronounced with the current drive towards ‘eco gardens’ resulting in more introductions of ornamental species with a close climate match between native and newly introduced regions. The results from the lattice model showed that the conditions associated with the introduction pathway (especially introduction pressure) dominate early invasion dynamics. The placement of introduction foci in urban areas limited the extent and abundance of invasive populations. Features of introduction events appear to initially mask the influence of intrinsic species traits on invasions and help to explain the relative success of species introduced for different purposes. Introduction dynamics therefore can have long‐lasting influences on the outcomes of species redistributions, and must be explicitly considered in management plans.  相似文献   

13.
The same vectors that introduce species to new ranges could move them among native populations, but how human‐mediated dispersal impacts native ranges has been difficult to address because human‐mediated dispersal and natural dispersal can simultaneously shape patterns of gene flow. Here, we disentangle human‐mediated dispersal from natural dispersal by exploiting a system where the primary vector was once extensive but has since ceased. From 10th to 19th Centuries, ships in the North Atlantic exchanged sediments dredged from the intertidal for ballast, which ended when seawater ballast tanks were adopted. We investigate genetic patterns from RADseq‐derived SNPs in the amphipod Corophium volutator (n = 121; 4,870 SNPs) and the annelid Hediste diversicolor (n = 78; 3,820 SNPs), which were introduced from Europe to North America, have limited natural dispersal capabilities, are abundant in intertidal sediments, but not commonly found in modern water ballast tanks. We detect similar levels of genetic subdivision among introduced North American populations and among native European populations. Phylogenetic networks and clustering analyses reveal population structure between sites, a high degree of phylogenetic reticulation within ranges, and phylogenetic splits between European and North American populations. These patterns are inconsistent with phylogeographic structure expected to arise from natural dispersal alone, suggesting human activity eroded ancestral phylogeographic structure between native populations, but was insufficient to overcome divergent processes between naturalized populations and their sources. Our results suggest human activity may alter species' evolutionary trajectories on a broad geographic scale via regional homogenization and global diversification, in some cases precluding historical inference from genetic data.  相似文献   

14.
Reconstructing historical colonization pathways of an invasive species is critical for uncovering factors that determine invasion success and for designing management strategies. The American bullfrog (Lithobates catesbeianus) is endemic to eastern North America, but now has a global distribution and is considered to be one of the worst invaders in the world. In Montana, several introduced populations have been reported, but little is known of their sources and vectors of introduction and secondary spread. We evaluated the genetic composition of introduced populations at local (Yellowstone River floodplain) and regional (Montana and Wyoming) scales in contrast to native range populations. Our objectives were to (1) estimate the number of introductions, (2) identify probable native sources, (3) evaluate genetic variation relative to sources, and (4) characterize properties of local‐ and regional‐scale spread. We sequenced 937 bp of the mitochondrial cytochrome b locus in 395 tadpoles collected along 100 km of the Yellowstone River, from three additional sites in MT and a proximate site in WY. Pairwise ΦST revealed high divergence among nonnative populations, suggesting at least four independent introductions into MT from diverse sources. Three cyt b haplotypes were identical to native haplotypes distributed across the Midwest and Great Lakes regions, and AMOVA confirmed the western native region as a likely source. While haplotype (Hd = 0.69) and nucleotide diversity (π = 0.005) were low in introduced bullfrogs, the levels of diversity did not differ significantly from source populations. In the Yellowstone, two identified haplotypes implied few introduction vectors and a significant relationship between genetic and river distance was found. Evidence for multiple invasions and lack of subsequent regional spread emphasizes the importance of enforcing legislation prohibiting bullfrog importation and the need for continuing public education to prevent transport of bullfrogs in MT. More broadly, this study demonstrates how genetic approaches can reveal key properties of a biological invasion to inform management strategies.  相似文献   

15.
Sparse, incomplete and inappropriate historical records of invasive species often hamper invasive species management interventions. Population genetic analyses of invaders might provide a suitable context for the identification of their source populations and possible introduction routes. Here, we describe the population genetics of Heracleum persicum Desf. ex Fisch and trace its route of introduction into Europe. Microsatellite markers revealed a significantly higher genetic diversity of H. persicum in its native range, and the loss of diversity in the introduced range may be attributed to a recent genetic bottleneck. Bayesian cluster analysis on regional levels identified three and two genetic clusters in the native and the introduced ranges, respectively. A global structure analysis revealed two worldwide distinct genetic groups: one primarily in Iran and Denmark, the other primarily in Norway. There were also varying degrees of admixture in England, Sweden, Finland and Latvia. Approximate Bayesian computation indicated two independent introductions of H. persicum from Iran to Europe: the first one in Denmark and the second one in England. Finland was subsequently colonized by English populations. In contrast to the contemporary hypothesis of English origin of Norwegian populations, we found Finland to be a more likely source for Norwegian populations, a scenario supported by higher estimated histor‐ical migration from Finland to Norway. Genetic diversity per se is not a primary determinant of invasiveness in H. persicum. Our results indicate that, due to either pre‐adaptations or rapid local adaptations, introduced populations may have acqu‐ired invasiveness after subsequent introductions, once a suitable environment was encountered.  相似文献   

16.
Despite its tropical origin, the Asian house gecko (Hemidactylus frenatus) is currently invading higher latitudes around the world. In this study, we investigated whether the introduced geckos in the subtropical/temperate region of southeastern Australia have shifted their thermal biology to cope with colder temperatures. In the lab, we measured the body temperatures of geckos from Thailand and Australia in a cost-free thermal gradient. Native H. frenatus from Thailand displayed a diel pattern of thermoregulation. Geckos maintained higher body temperatures during mid-afternoon and at dusk but selected cooler temperatures during the night. Introduced geckos showed a similar pattern of thermoregulation, but selected lower body temperatures in summer (mean = 28.9 °C) and winter (mean = 25.5 °C) than native geckos (mean = 31.5 °C). While the Asian house geckos from Thailand did not alter their body temperatures after feeding, their conspecifics from southeastern Australia selected body temperatures that were 1.6–3.1 °C higher after feeding. In conclusion, our study shows that invasive house geckos in Australia have shifted their preferred body temperatures downwards relative to their native conspecifics in Thailand, presumably as a result of plasticity or natural selection. Our findings suggest that these tropical geckos have adapted to colder regions, and thus, they may spread much further than expected for a tropical ectotherm.  相似文献   

17.
Abstract Stephens' Banded Snakes (Hoplocephalus stephensii Krefft 1869) are large (to 1 m), highly arboreal elapid snakes, restricted to mesic forested areas along the eastern coast of Australia. Radiotelemetric monitoring of 16 individuals at Whian Whian State Forest in north‐eastern New South Wales over 25 months provided the first data on spatial ecology of this threatened taxon. Two major influences on movements by Stephens' Banded Snakes were identified: the distribution of large hollow‐bearing trees, and the avoidance of conspecifics. Radiotracked snakes were sedentary inside tree hollows for extended periods (mean = 8 days) during their active season, interrupted by occasional long (mean = 124 m) nocturnal movements to another shelter tree. Snakes travelled on the ground rather than within the canopy, and thus were potentially exposed to terrestrial predators. Although the home ranges of the radiotracked snakes overlapped substantially (mean = 27%), simultaneous occupancy of ‘shared’ shelter trees was less common than expected by chance. Hence, we conclude that adult Stephens' Banded Snakes generally avoid the presence of conspecifics. Snakes used from five to 30 shelter trees and home ranges of male snakes were larger than those of females (mean = 20.2 vs 5.4 ha). The large spatial scale of these movements, and limited overlap among individuals, means that a viable population of this taxon requires a large area of contiguous forest. This requirement may explain why the species has not persisted in small forest fragments.  相似文献   

18.
Aim To examine the composition and structure of the arthropod community on the invasive weed Lepidium draba in its native, expanded and introduced ranges, in order to elucidate the lack of a biotic constraint that may facilitate invasion. Location Europe and western North America. Methods Identical sampling protocols were used to collect data from a total of 35 populations of L. draba in its native (Eastern European), expanded (Western European) and introduced (western US) ranges. A bootstrapping analysis was used to compare herbivore richness, diversity and evenness among the regions. Core species groups (monophages, oligophages and polyphages) on the plant were defined and their abundances and host utilization patterns described. Results Species richness was greatest in the native range, while species diversity and evenness were similar in the native and expanded range, but significantly greater than in the introduced range of L. draba. Specialist herbivore abundance was greater in the native and expanded compared with the introduced range. Oligophagous Brassicaceae‐feeders were equally abundant in all three ranges, and polyphagous herbivore abundance was significantly greater in the introduced range. Overall herbivore abundance was greater in the introduced range. Host utilization was more complete in the two European ranges due to monophagous herbivores that do not exist in the introduced range. Root feeders and gall formers were completely absent from the introduced range, which was dominated by generalist sap‐sucking herbivores. However, one indigenous stem‐mining weevil, Ceutorhynchus americanus, occurred on L. draba in the introduced range. Main conclusions This is, to our knowledge, the first study documenting greater herbivore abundance on an invasive weed in its introduced, compared with its native, range. However, greater abundance does not necessarily translate to greater impact. We argue that, despite the greater total herbivore abundance in the introduced range, differences in the herbivore community structure (specialist vs. generalist herbivory) may contribute to the invasion success of L. draba in the western USA.  相似文献   

19.
The skulls of 387 shrews of the genus Crocidura sampled in peninsular Malaysia, Sumatra, Borneo, Java and Sulawesi were submitted to principal component and stepwise discriminant analyses. These analyses helped to delineate morphological taxa in this species-rich genus of mammals. Most morphologic groups could be attributed to described species, except one taxon from Sumatra and one from Sulawesi, which are described and named as new. Most of the 21 species recognized in this paper are endemic to one major island. Although Sulawesi has never been connected to the mainland, it supports at least six species, followed by Sumatra (5–6 species), Java and the Malay Peninsula (4 spp) and Borneo (3 spp). C. monticola is apparently the only widespread species whose distribution range covers the entire Malay Archipelago except the Philippines and Sulawesi. In contrast, the continental C. fuliginosa enters only marginally into the Sunda Shelf: its southernmost record is on the Malay Peninsula. This interpretation is completely different from the classical view that C. fuliginosa is a cosmopolitan species occupying the whole of Southeast Asia. Identification keys, tables of measurements and discriminant functions provided in this work may aid in identification of the various species and subspecies of Crocidura living in the Malaya Archipelago.  相似文献   

20.
The frequency of plant species introductions has increased in a highly connected world, modifying species distribution patterns to include areas outside their natural ranges. These introductions provide the opportunity to gain new insight into the importance of flowering phenology as a component of adaptation to a new environment. Three Coffea species, C. arabica, C. canephora (Robusta), and C. liberica, native to intertropical Africa have been introduced to New Caledonia. On this archipelago, a secondary contact zone has been characterized where these species coexist, persist, and hybridize spontaneously. We investigated the impact of environmental changes undergone by each species following its introduction in New Caledonia on flowering phenology and overcoming reproductive barriers between sister species. We developed species distribution models and compared both environmental envelopes and climatic niches between native and introduced hybrid zones. Flowering phenology was monitored in a population in the hybrid zone along with temperature and precipitation sequences recorded at a nearby weather station. The extent and nature of hybridization events were characterized using chloroplast and nuclear microsatellite markers. The three Coffea species encountered weak environmental suitability compared to their native ranges when introduced to New Caledonia, especially C. arabica and C. canephora. The niche of the New Caledonia hybrid zone was significantly different from all three species' native niches based on identity tests (I Similarity and D Schoener's Similarity Indexes). This area appeared to exhibit intermediate conditions between the native conditions of the three species for temperature‐related variables and divergent conditions for precipitation‐related ones. Flowering pattern in these Coffea species was shown to have a strong genetic component that determined the time between the triggering rain and anthesis (flower opening), specific to each species. However, a precipitation regime different from those in Africa was directly involved in generating partial flowering overlap between species and thus in allowing hybridization and interspecific gene flow. Interspecific hybrids accounted for 4% of the mature individuals in the sympatric population and occurred between each pair of species with various level of introgression. Adaptation to new environmental conditions following introduction of Coffea species to New Caledonia has resulted in a secondary contact between three related species, which would not have happened in their native ranges, leading to hybridization and gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号