首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Kitahara  H Yamada  K Akasaka 《Biochemistry》2001,40(45):13556-13563
High-pressure 15N/1H two-dimensional NMR spectroscopy has been utilized to study conformational fluctuation of a 76-residue protein ubiquitin at pH 4.5 at 20 degrees C. The on-line variable pressure cell technique is used in conjunction with a high-field NMR spectrometer operating at 750 MHz for 1H in the pressure range between 30 and 3500 bar. Large, continuous and reversible pressure-induced 1H and 15N chemical shifts were observed for 68 backbone amide groups, including the 7.52 ppm 15N shift of Val70 at 3500 bar, indicating a large-scale conformational change of ubiquitin with pressure. On the basis of the analysis of sigmoid-shaped pressure shifts, we conclude that ubiquitin exists as an equilibrium mixture of two major folded conformers mutually converting at a rate exceeding approximately 10(4) s(-1) at 20 degrees C at 2000 bar. The second conformer exists at a population of approximately 15% (DeltaG(0) = 4.2 kJ/mol) and is characterized with a significantly smaller partial molar volume (DeltaV(0) = -24 mL/mol) than that of the well-known basic native conformer. The analysis of 1H and 15N pressure shifts of individual amide groups indicates that the second conformer has a loosened core structure with weakened hydrogen bonds in the five-stranded beta-sheet. Furthermore, hydrogen bonds of residues 67-72 belonging to beta5 are substantially weakened or partially broken, giving increased freedom of motion for the C-terminal segment. The latter is confirmed by the significant decrease in 15N[1H] nuclear Overhauser effect for residues beyond 70 at high pressure. Since the C-terminal carboxyl group constitutes the reactive site for producing a multi-ubiquitin structure, the finding of the second folded conformer with a substantially altered conformation and mobility in the C-terminal region will shed new light on the reaction mechanism of ubiquitin.  相似文献   

2.
The effect of the pressure on the structure and stability of the D-galactose/D-glucose binding protein from Escherichia coli in the absence (GGBP) and in the presence (GGBP/Glc) of glucose was studied by Fourier transform infrared (FT-IR) spectroscopy and molecular dynamic (MD) simulations. FT-IR spectroscopy experiments showed that the protein beta-structures are more resistant than alpha-helices structures to pressure value increases. In addition, the infrared data indicated that the binding of glucose stabilizes the protein structure against high pressure values, and the protein structure does not completely unfold up to pressure values close to 9000 bar. MD simulations allow a prediction of the most probable configuration of the protein, consistent with the increasing pressures on the two systems. The detailed analysis of the structures at molecular level confirms that, among secondary structures, alpha-helices are more sensitive than beta-structures to the destabilizing effect of high pressure and that glucose is able to preserve the structure of the protein in the complex. Moreover, the evidence of the different resistance of the two domains of this protein to high pressure is investigated and explained at a molecular level, indicating the importance of aromatic amino acid in protein stabilization.  相似文献   

3.
High-pressure (15)N/(1)H NMR techniques were used to characterize the conformational fluctuations of hen lysozyme, in its native state and when denatured in 8 M urea, over the pressure range 30--2000 bar. Most (1)H and (15)N signals of native lysozyme show reversible shifts to low field with increasing pressure, the average pressure shifts being 0.069 +/- 0.101 p.p.m. ((1)H) and 0.51 +/- 0.36 p.p.m. ((15)N). The shifts indicate that the hydrogen bonds formed to carbonyl groups or water molecules by the backbone amides are, on average, shortened by approximately 0.02 A as a result of pressure. In native lysozyme, six residues in the beta domain or at the alpha/beta domain interface have anomalously large nonlinear (15)N and (1)H chemical-shift changes. All these residues lie close to water-containing cavities, suggesting that there are conformational changes involving these cavities, or the water molecules within them, at high pressure. The pressure-induced (1)H and (15)N shifts for lysozyme denatured in 8 M urea are much more uniform than those for native lysozyme, with average backbone amide shifts of 0.081 +/- 0.029 p.p.m. ((1)H) and 0.57 +/- 0.14 p.p.m. ((15)N). The results show that overall there are no significant variations in the local conformational properties of denatured lysozyme with pressure, although larger shifts in the vicinity of a persistent hydrophobic cluster indicate that interactions in this part of the sequence may rearrange. NMR diffusion measurements demonstrate that the effective hydrodynamic radius of denatured lysozyme, and hence the global properties of the denatured ensemble, do not change detectably at high pressure.  相似文献   

4.
The anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein interacts with several proteins that regulate the apoptotic properties of cells. In this research, we conduct several all-atom molecular dynamics (MD) simulations under high-temperature unfolding conditions, from 400 to 800?K, for 25?ns. These simulations were performed using a model of an engineered Bcl-2 human protein (Bcl-2-Δ22Σ3), which lacks 22 C-terminal residues of the transmembrane domain. The aim of this study is to gain insight into the structural behavior of Bcl-2-Δ22Σ3 by mapping the conformational movements involved in Bcl-2 stability and its biological function. To build a Bcl-2-Δ22Σ3 three-dimensional model, the protein core was built by homology modeling and the flexible loop domain (FLD, residues 33-91) by ab initio methods. Further, the entire protein model was refined by MD simulations. Afterwards, the production MD simulations showed that the FLD at 400 and 500?K has several conformations reaching into the protein core, whereas at 600?K some of the alpha-helices were lost. At 800?K, the Bcl-2 core is destabilized suggesting a possible mechanism for protein unfolding, where the alpha helices 1 and 6 were the most stable, and a reduction in the number of hydrogen bonds initially occurs. In conclusion, the structural changes and the internal protein interactions suggest that the core and the FLD are crucial components of Bcl-2 in its function of regulate ng access to the recognition sites of kinases and caspases.  相似文献   

5.
A sample of 35 independent molecular dynamics (MD) simulations of calmodulin (CaM) equilibrium dynamics was prepared from different but equally plausible initial conditions (20 simulations of the wild-type protein and 15 simulations of the D129N mutant). CaM's radius of gyration and backbone mean-square fluctuations were analyzed for the effect of the D129N mutation, and simulations were compared with experiments. Statistical tests were employed for quantitative comparisons at the desired error level. The computational model predicted statistically significant compaction of CaM relative to the crystal structure, consistent with the results of small-angle X-ray scattering (SAXS) experiments. This effect was not observed in several previously reported studies of (Ca2+)(4)-CaM, which relied on a single MD run. In contrast to radius of gyration, backbone mean-square fluctuations showed a distinctly non-normal and positively skewed distribution for nearly all residues. Furthermore, the D129N mutation affected the backbone dynamics in a complex manner and reduced the mobility of Glu123, Met124, Ile125, Arg126, and Glu127 located in the adjacent alpha-helix G. The implications of these observations for the comparisons of MD simulations with experiments are discussed. The proposed approach may be useful in studies of protein equilibrium dynamics where MD simulations fall short of properly sampling the conformational space, and when the comparison with experiments is affected by the reproducibility of the computational model.  相似文献   

6.
Q X Hua  M A Weiss 《Biochemistry》1990,29(46):10545-10555
2D 1H NMR studies are presented of des-pentapeptide-insulin, an analogue of human insulin lacking the C-terminal five residues of the B chain. Removal of these residues, which are not required for function, is shown to reduce conformational broadening previously described in the spectrum of intact insulin [Weiss et al. (1989) Biochemistry 28, 9855-9873]. This difference presumably reflects more rapid internal motions in the fragment, which lead to more complete averaging of chemical shifts on the NMR time scale. Sequential 1H NMR assignment and preliminary structural analysis demonstrate retention in solution of the three alpha-helices observed in the crystal state and the relative orientation of the receptor-binding surfaces. These studies provide a foundation for determining the solution structure of insulin.  相似文献   

7.
The relationship between inherent internal conformational processes and enzymatic activity or thermodynamic stability of proteins has proven difficult to characterize. The study of homologous proteins with differing thermostabilities offers an especially useful approach for understanding the functional aspects of conformational dynamics. In particular, ribonuclease HI (RNase H), an 18 kD globular protein that hydrolyzes the RNA strand of RNA:DNA hybrid substrates, has been extensively studied by NMR spectroscopy to characterize the differences in dynamics between homologs from the mesophilic organism E. coli and the thermophilic organism T. thermophilus. Herein, molecular dynamics simulations are reported for five homologous RNase H proteins of varying thermostabilities and enzymatic activities from organisms of markedly different preferred growth temperatures. For the E. coli and T. thermophilus proteins, strong agreement is obtained between simulated and experimental values for NMR order parameters and for dynamically averaged chemical shifts, suggesting that these simulations can be a productive platform for predicting the effects of individual amino acid residues on dynamic behavior. Analyses of the simulations reveal that a single residue differentiates between two different and otherwise conserved dynamic processes in a region of the protein known to form part of the substrate-binding interface. Additional key residues within these two categories are identified through the temperature-dependence of these conformational processes.  相似文献   

8.
The combination of the wide availability of protein backbone and side-chain NMR chemical shifts with advances in understanding of their relationship to protein structure makes these parameters useful for the assessment of structural-dynamic protein models. A new chemical shift predictor (PPM) is introduced, which is solely based on physical?Cchemical contributions to the chemical shifts for both the protein backbone and methyl-bearing amino-acid side chains. To explicitly account for the effects of protein dynamics on chemical shifts, PPM was directly refined against 100?ns long molecular dynamics (MD) simulations of 35 proteins with known experimental NMR chemical shifts. It is found that the prediction of methyl-proton chemical shifts by PPM from MD ensembles is improved over other methods, while backbone C??, C??, C??, N, and HN chemical shifts are predicted at an accuracy comparable to the latest generation of chemical shift prediction programs. PPM is particularly suitable for the rapid evaluation of large protein conformational ensembles on their consistency with experimental NMR data and the possible improvement of protein force fields from chemical shifts.  相似文献   

9.
While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6–17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for 1Hα, 1HN, 13Cα, 13Cβ, 13CO and backbone 15N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at .  相似文献   

10.
Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). (13)C and (15)N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding, and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, nonideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and nonideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (?, ψ) torsion angles for three "basis" states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding, and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins.  相似文献   

11.
The ionization of internal groups in proteins can trigger conformational change. Despite this being the structural basis of most biological energy transduction, these processes are poorly understood. Small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy experiments at ambient and high hydrostatic pressure were used to examine how the presence and ionization of Lys-66, buried in the hydrophobic core of a stabilized variant of staphylococcal nuclease, affect conformation and dynamics. NMR spectroscopy at atmospheric pressure showed previously that the neutral Lys-66 affects slow conformational fluctuations globally, whereas the effects of the charged form are localized to the region immediately surrounding position 66. Ab initio models from SAXS data suggest that when Lys-66 is charged the protein expands, which is consistent with results from NMR spectroscopy. The application of moderate pressure (<2 kbar) at pH values where Lys-66 is normally neutral at ambient pressure left most of the structure unperturbed but produced significant nonlinear changes in chemical shifts in the helix where Lys-66 is located. Above 2 kbar pressure at these pH values the protein with Lys-66 unfolded cooperatively adopting a relatively compact, albeit random structure according to Kratky analysis of the SAXS data. In contrast, at low pH and high pressure the unfolded state of the variant with Lys-66 is more expanded than that of the reference protein. The combined global and local view of the structural reorganization triggered by ionization of the internal Lys-66 reveals more detectable changes than were previously suggested by NMR spectroscopy at ambient pressure.  相似文献   

12.
Massi F  Wang C  Palmer AG 《Biochemistry》2006,45(36):10787-10794
Solution NMR spin relaxation experiments and classical MD simulations are used to study the dynamics of triosephosphate isomerase (TIM) in complex with glycerol 3-phosphate (G3P). Three regions in TIM exhibit conformational transitions on the micros-ms time scale as detected by chemical exchange broadening effects in NMR spectroscopy: residue Lys 84 on helix C, located at the dimeric interface; active site loop 6; and helix G. The results indicate that the conformational exchange process affecting the residues of loop 6 is the correlated opening and closing of the loop. Distinct processes are responsible for the chemical exchange linebroadening observed in the other regions of TIM. MD simulations confirm that motions of individual residues within the active site loop are correlated and suggest that the chemical exchange processes observed for residues in helix G arise from transitions between 3(10)- and alpha-helical structures. The results of the joint NMR and MD study provide global insight into the role of conformational dynamic processes in the function of TIM.  相似文献   

13.
Anisotropic network model (ANM) is used to analyze the collective motions of restriction enzyme EcoRI in free form and in complex with DNA. For comparison, three independent molecular dynamics (MD) simulations, each of 1.5 ns duration, are also performed for the EcoRI-DNA complex in explicit water. Although high mobility (equilibrium fluctuations) of inner and outer loops that surround the DNA is consistent in both methods and experiments, MD runs sample different conformational subspaces from which reliable collective dynamics cannot be extracted. However, ANM employed on different conformations from MD simulations indicates very similar collective motions. The stems of the inner loops are quite immobile even in the free enzyme and form a large, almost fixed, pocket for DNA binding. As a result, the residues that make specific and non-specific interactions with the DNA exhibit very low fluctuations in the free enzyme. The vibrational entropy difference between the EcoRI complex and free protein + unkinked DNA is positive (favorable), which may partially counteract the unfavorable enthalpy difference of DNA kink formation. Dynamic domains in EcoRI complex and cross-correlations between residue fluctuations indicate possible means of communication between the distal active sites.  相似文献   

14.
The influence of pressure on the equilibrium between five‐(5c) and six‐coordination (6c) forms in neuroglobin (Ngb) and myoglobin (Mb) has been examined by means of molecular dynamics (MD) simulations at normal and high pressure. The results show that the main effect of high pressure is to reduce the protein mobility without altering the structure in a significant manner. Moreover, our data suggest that the equilibrium between 5c and 6c states in globins is largely controlled by the structure and dynamics of the C‐D region. Finally, in agreement with the available experimental data, the free energy profiles obtained from steered MD for both proteins indicate that high pressure enhances hexacoordination. In Ngb, the shift in equilibrium is mainly related to an increase in the 6c→5c transition barrier, whereas in Mb such a shift is primarily due to a destabilization of the 5c state. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Park MS  Smrcka AV  Stern HA 《Proteins》2011,79(2):518-527
Previous NMR experiments on unbound G protein βγ heterodimer suggested that particular residues in the binding interface are mobile on the nanosecond timescale. In this work we performed nanosecond‐timescale molecular dynamics simulations to investigate conformational changes and dynamics of Gβγ in the presence of several binding partners: a high‐affinity peptide (SIGK), phosducin, and the GDP‐bound α subunit. In these simulations, the high mobility of GβW99 was reduced by SIGK, and it appeared that a tyrosine might stabilize GβW99 by hydrophobic or aromatic stacking interactions in addition to hydrogen bonds. Simulations of the phosducin‐Gβγ complex showed that the mobility of GβW99 was restricted, consistent with inferences from NMR. However, large‐scale conformational changes of Gβγ due to binding, which were hypothesized in the NMR study, were not observed in the simulations, most likely due to their short (nanosecond) duration. A pocket consisting of hydrophobic amino acids on Gα appears to restrict GβW99 mobility in the crystal structure of the Gαβγ? heterotrimer. The simulation trajectories are consistent with this idea. However, local conformational changes of residues GβW63, GβW211, GβW297, GβW332, and GβW339 were detected during the MD simulations. As expected, the magnitude of atomic fluctuations observed in simulations was greater for α than for the βγ subunits, suggesting that α has greater flexibility. These observations support the notion that to maintain the high mobility of GβW99 observed by solution NMR requires that the Gβ–α interface must open up on time scale longer than can be observed in nanosecond scale simulations. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Molecular dynamics (MD) simulations were carried out to study the conformational rearrangement induced by deprotonation of the fluorescent chromophore in GFP, as well as the associated changes in the hydrogen-bonding network. For both the structures with either a neutral or an anionic chromophore, it was found that the beta-barrel was stable and rigid, and the conformation of the chromophore was consistent with the available x-ray structure. The conformational change in Thr203 due to deprotonation was also found to be consistent with the three-state isomerization model. Although GFP is highly fluorescent, denatured-GFP is nonfluorescent, indicating that the environment of the protein plays an important role in its fluorescence behavior. Our MD simulations, which explore the effect of the protein shell on the conformation of the chromophore, find the flexibility of the central chromophore to be significantly restricted due to the rigid nature of the protein shell. The hydrogen-bonding between the chromophore and neighboring residues was also shown to contribute to the chromophore rigidity. In addition to the MD studies, quantum mechanics/molecular mechanics (QM/MM) ONIOM calculations were carried out to investigate the effect of the beta-barrel on the internal rotation in the chromophore. Along with providing quantitative values for torsional rotation barriers about the bridging bond in the chromophore, the ONIOM calculations also validate our MD force field parameters.  相似文献   

17.
Human manganese superoxide dismutase (MnSOD) is a homotetramer of 22 kDa subunits, a dimer of dimers containing dimeric and tetrameric interfaces. We have investigated conformational mobility at these interfaces by measuring amide hydrogen/deuterium (H/D) exchange kinetics and 19F NMR spectra, both being excellent methods for analyzing local environments. Human MnSOD was prepared in which all nine tyrosine residues in each subunit are replaced with 3-fluorotyrosine. The 19F NMR spectrum of this enzyme showed five sharp resonances that have been assigned by site-specific mutagenesis by replacing each 3-fluorotyrosine with phenylalanine; four 19F resonances not observed are near the paramagnetic manganese and extensively broadened. The temperature dependence of the line widths and chemical shifts of the 19F resonances were used to estimate conformational mobility. 3-Fluorotyrosine 169 at the dimeric interface showed little conformational mobility and 3-fluorotyrosine 45 at the tetrameric interface showed much greater mobility by these measures. In complementary studies, H/D exchange mass spectrometry was used to measure backbone dynamics in human MnSOD. Using this approach, amide hydrogen exchange kinetics were measured for regions comprising 78% of the MnSOD backbone. Peptides containing Tyr45 at the tetrameric interface displayed rapid exchange of hydrogen with deuterium while peptides containing Tyr169 in the dimeric interface only displayed moderate exchange. Taken together, these studies show that residues at the dimeric interface, such as Tyr169, have significantly less conformational freedom or mobility than do residues at the tetrameric interface, such as Tyr45. This is discussed in terms of the role in catalysis of residues at the dimeric interface.  相似文献   

18.
Mass-weighted molecular dynamics simulation of cyclic polypeptides.   总被引:1,自引:0,他引:1  
B Mao  G M Maggiora  K C Chou 《Biopolymers》1991,31(9):1077-1086
A modified molecular dynamics (MD) method in which atomic masses are weighted was developed previously for studying the conformational flexibility of neuroregulating tetrapeptide Phe-Met-Arg-Phe-amide (FMRF-amide). The method has now been applied to longer and constrained molecules, namely a disulfide-linked cyclic hexapeptide, c[CYFQNC], and its linear and "pseudo-cyclic" analogues. The sampling of dehedral conformational space of teh linear hexapeptide in mass-weighted MD simulations was found to be improved significantly over conventional MD simulations, as in the case of the shorter FMRF-amide molecule studied previously. In the cyclic hexapeptide, the internal constraint of the molecule due to the intramolecular disulfide bond (hence the absence of free terminals in the molecule) does not adversely affect the significant improvement of conformational sampling in mass-weighted MD simulations over normal MD simulations. The pseudo-cyclic polypeptide is identical to the linear CYFQNC molecule in amino acid sequence (i.e., side chains of the cysteine residues are reduced), but the positions of its two terminal heavy atoms were held fixed in space such that the molecule has a nearly cyclic conformation. For this molecule, the mass-weighted MD simulation generated a wide range of polypeptide backbone conformations covering the internal dihedral degrees of freedom; moreover, the physical space of the pseudo-cyclic structure was also sampled in a complete revolution of the entire molecular fragment about the two fixed termini during the simulation. These characteristics suggest that mass-weighted MD can also be an extremely useful method for conformational analyses of constrained molecules and, in particular, for modeling loops on protein surfaces.  相似文献   

19.
《Biophysical journal》2022,121(23):4560-4568
The use of polyproline II (PPII) helices in protein design is currently hindered by limitations in our understanding of their conformational stability and folding. Recent studies of the snow flea antifreeze protein (sfAFP), a useful model system composed of six PPII helices, suggested that a low denatured state entropy contributes to folding thermodynamics. Here, circular dichroism spectroscopy revealed minor populations of PPII like conformers at low temperature. To get atomic level information on the conformational ensemble and entropy of the reduced, denatured state of sfAFP, we have analyzed its chemical shifts and {1H}-15N relaxation parameters by NMR spectroscopy at four experimental conditions. No significant populations of stable secondary structure were detected. The stiffening of certain N-terminal residues at neutral versus acidic pH and shifted pKa values leads us to suggest that favorable charge-charge interactions could bias the conformational ensemble to favor the formation the C1-C28 disulfide bond during nascent folding, although no evidence for preferred contacts between these positions was detected by paramagnetic relaxation enhancement under denaturing conditions. Despite a high content of flexible glycine residues, the mobility of the sfAFP denatured ensemble is similar for denatured α/β proteins both on fast ps/ns as well as slower μs/ms timescales. These results are in line with a conformational entropy in the denatured ensemble resembling that of typical proteins and suggest that new structures based on PPII helical bundles should be amenable to protein design.  相似文献   

20.
Molecular dynamics simulations as a tool for improving protein stability   总被引:1,自引:0,他引:1  
Haloalkane dehalogenase (DhlA) was used as a model protein to explore the possibility to use molecular dynamics (MD) simulations as a tool to identify flexible regions in proteins that can serve as a target for stability enhancement by introduction of a disulfide bond. DhlA consists of two domains: an alpha/beta-hydrolase fold main domain and a cap domain composed of five alpha-helices. MD simulations of DhlA showed high mobility in a helix-loop-helix region in the cap domain, involving residues 184-211. A disulfide cross-link was engineered between residue 201 of this flexible region and residue 16 of the main domain. The mutant enzyme showed substantial changes in both thermal and urea denaturation. The oxidized form of the mutant enzyme showed an increase of the apparent transition temperature from 47.5 to 52.5 degrees C, whereas the T(m,app) of the reduced mutant decreased by more than 8 degrees C compared to the wild-type enzyme. Urea denaturation results showed a similar trend. Measurement of the kinetic stability showed that the introduction of the disulfide bond caused a decrease in activation free energy of unfolding of 0.43 kcal mol(-1) compared to the wild-type enzyme and also indicated that the helix-loop-helix region was involved early in the unfolding process. The results show that MD simulations are capable of identifying mobile protein domains that can successfully be used as a target for stability enhancement by the introduction of a disulfide cross-link.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号