首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microdissected beta-cell-rich pancreatic islets of ob/ob mice were used in studies of the relationship between intracellular pH (pHi) and 45Ca2+ uptake and insulin release. Stepwise increases in extracellular pH (pHo) from 6.80 to 8.00 resulted in a parallel, although less pronounced, elevation of pHi from 7.24 to 7.69. Experimental conditions that alkalinize the islet cell interior, i.e. addition of 5 mM-NH4+, sudden withdrawal of extracellular bicarbonate buffer or increase in pHo, induced insulin secretion in the absence of other types of secretory stimulation (1 mM-D-glucose). Intracellular acidification by lowering pHo below 7.40 or sudden addition of bicarbonate buffer did not induce insulin secretion. The removal of extracellular bicarbonate buffer, increase in pHo from 7.40 to 8.00, or the addition of 5 mM-L-5-hydroxytryptophan or 5 mM-NH4+, which all alkalinize the islet cells and induce insulin secretion, also increased the La3+-non-displaceable 45Ca2+ uptake in the presence of 1 mM-D-glucose. The results suggest that intracellular alkalinization in beta-cells can trigger insulin secretion. Taken together with the fact that D-glucose increases pHi in the islet cells, the results also point to the possibility that alkalinization may be a link in the stimulus-secretion coupling sequence in beta-cells.  相似文献   

2.
Regulation of intracellular pH in human neutrophils   总被引:16,自引:4,他引:12       下载免费PDF全文
The intracellular pH (pHi) of isolated human peripheral blood neutrophils was measured from the fluorescence of 6-carboxyfluorescein (6-CF) and from the equilibrium distribution of [14C]5,5-dimethyloxazolidine -2,4-dione (DMO). At an extracellular pH (pHo) of 7.40 in nominally CO2-free medium, the steady state pHi using either indicator was approximately 7.25. When pHo was suddenly raised from 7.40 to 8.40 in the nominal absence of CO2, pHi slowly rose by approximately 0.35 during the subsequent hour. A change of similar magnitude in the opposite direction occurred when pHo was reduced to 6.40. Both changes were reversible. Intrinsic intracellular buffering power, determined by using graded pulses of CO2 or NH4Cl, was approximately 50 mM/pH over the pHi range of 6.8-7.9. The course of pHi obtained from the distribution of DMO was followed during and after imposition of intracellular acid and alkaline loads. Intracellular acidification was brought about either by exposing cells to 18% CO2 or by prepulsing with 30 mM NH4Cl, while pHo was maintained at 7.40. In both instances, pHi (6.80 and 6.45, respectively) recovered toward the control value at rates of 0.029 and 0.134 pH/min. These rates were reduced by approximately 90% either by 1 mM amiloride or by replacement of extracellular Na with N-methyl-D-glucamine. Recovery was not affected by 1 mM SITS or by 40 mM alpha-cyano-4-hydroxycinnamate (CHC), which inhibits anion exchange in neutrophils. Therefore, recovery from acid loading is probably due to an exchange of internal H for external Na. Intracellular alkalinization was achieved by exposing the cells to 30 mM NH4Cl or by prepulsing with 18% CO2, both at a constant pHo 7.40. In both instances, pHi, which was 7.65 and 7.76, respectively, recovered to the control value. The recovery rates (0.033 and 0.077 pH/min, respectively) were reduced by 80-90% either by 40 mM CHC or by replacement of extracellular Cl with p-aminohippurate (PAH). SITS, amiloride, and ouabain (0.1 mM) were ineffective.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringer's solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringer's solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringer's, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringer's solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.  相似文献   

4.
The course of intracellular pH (pHi) was followed in superfused (36 degrees C) single glomus (type I) cells of the freshly dissociated adult rat carotid body. The cells had been loaded with the pH-sensitive fluorescent dye 2',7'-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein. The high K(+)-nigericin method was used for calibration. The pHi of the glomus cell at pHo 7.40, without CO2, was 7.23 +/- 0.02 (n = 70); in 5% CO2/25 mM HCO3-, pHi was 7.18 +/- 0.08 (n = 9). The pHi was very sensitive to changes in pHo. Without CO2, delta pHi/delta pHo was 0.85 (pHo 6.20-8.00; 32 cells), while in CO2/HCO3- this ratio was 0.82 irrespective of whether pHo (6.80-7.40; 14 cells) was changed at constant PCO2 or at constant [HCO3-]o. The great pHi sensitivity of the glomus cell to pHo is matched only by that of the human red cell. An active Na+/H+ exchanger (apparent Km = 58 +/- 6 mM) is present in glomus cells: Na+ removal or addition of the amiloride derivative 5-(N,N-hexamethylene)-amiloride induced pHi to fall by as much as 0.9. The membrane of these cells also contains a K+/H+ exchanger. Raising [K+]o from 4.7 to 25, 50, or 140 mM reversibly raised pHi by 0.2, 0.3, and 0.6, respectively. Rb+ had no effect, but in corresponding concentrations of Tl+ alkalinization was much faster than in K+. Reducing [K+]o to 1.5 mM lowered pHi by 0.1. These pHi changes were shown not to be due to changes in membrane voltage, and were even more striking in the absence of Na+. Intrinsic buffering power (amount of strong base required to produce, in the nominal absence of CO2, a small pHi rise) increased from 3 to approximately 21 mM as pHi was lowered, but remained nearly unchanged below pHi 6.60. The fitted expression assumed the presence of one "equivalent" intracellular buffer (pK 6.41, 41 mM). The exceptional pHi sensitivity to pHo suggests that the pHi of the glomus cell is a link in the chemoreceptor's response to external acidity.  相似文献   

5.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

6.
Recessed-tip microelectrodes were used to measure internal pH (pHi) in the fungus Neurospora, and to examine the response of pHi to several kinds of stress: changes of extracellular pH (pHo), inhibition of the principal proton pump in the plasma membrane, and inhibition of respiration. Under control conditions, at pHo = 5.8, pHi in Neurospora is 7.19 +/- 0.04. Changes of pHo between 3.9 and 9.3 affect pHi linearly but with a slope of only approximately 0.1 unit pHi per unit pHo, stable pHi being reached within 3 min of changed pHo. Despite a postulated high passive permeability of the Neurospora membrane to protons (Slayman, 1970), neither active nor passive H+ transport appears critical to pHi because (alpha) specific inhibition of the proton pump by orthovanadate has little effect on pHi, and (b) cytoplasmic acidification produced by respiratory blockade is unaffected by the size or direction of proton gradient. To convert measured changes in pHi into net proton fluxes, intracellular buffering capacity (beta i) was measured by the weak acid/weak base technique. At pHi = 7.2, beta i was (-) 35 mmol H+ (liter cell water)-1 (pH unit)-1, but beta i increased substantially in both the acid and alkaline directions, which suggests that amino acid side chains are the principal source of buffer.  相似文献   

7.
22Na+ flux and cytoplasmic pH (pHi) determinations were used to study the reversibility, symmetry, and mechanism of activation of the Na+/H+ exchange system in rat thymic lymphocytes. In acid-loaded cells, the antiport can be detected as an Na+-induced, amiloride-sensitive alkalinization. At pHi greater than or equal to 7.0, amiloride- sensitive net H+ fluxes are not detectable. To investigate whether at this pHi the transporter is operative in a different mode, e.g., Na+/Na+ exchange, 22Na+ uptake was measured as a function of pHi. The results indicate that the antiport is relatively inactive at pHi greater than or equal to 7.0. Comparison of the rates of H+ efflux (or equivalent OH- uptake) and Na+ uptake indicate that Na+/Na+ countertransport through this system is negligible at all values of pHi and that the Na+:H+ stoichiometry is 1:1. Measurements of pHi in Na+- loaded cells suspended in Na+-free medium revealed an amiloride- sensitive cytoplasmic acidification, which is indicative of exchange of internal Na+ for external H+. The symmetry of the system was analyzed by measuring the effect of extracellular pH (pHo) on Na+ efflux. Unlike cytoplasmic acidification, lowering pHo failed to activate the antiport. The results indicate that the amiloride-sensitive Na+/H+ exchanger is reversible but asymmetric. The system is virtually inactive at pHi greater than or equal to 7.0 but can be activated by protonation of a modifier site on the cytoplasmic surface. Activation can also occur by depletion of cellular Na+. It is proposed that Na+ may also interact with the modifier site, stabilizing the unprotonated (inactive) form.  相似文献   

8.
A pH-sensitive site controls the lambda max of Limulus metarhodopsin. The properties of this site were examined using intracellular recordings of the early receptor potential (ERP) as a pigment assay. ERPs recorded over a range of extracellular pHs indicate that the apparent pK of the site is in the range of 8.3-8.6. Several lines of evidence indicate that the site responds directly to changes in extracellular pH (pHo) rather than to changes in intracellular pH(pHi) that follow as a secondary result of changing pHo : (a) the effect of changing pHo was rapid (less than 60 s); (b) when pHo was raised, the simultaneous rise in pHi, as measured with phenol red, was relatively small; (c) raising pHi by intracellular injection of pH 10 glycine buffer did not affect the site; and (d) the effect of changing pH0 could not be blocked by increasing the intracellular pH buffering capacity. It is concluded that the pH-sensitive site on metarhodopsin is on the extracellular surface of the plasma membrane.  相似文献   

9.
Interactions between intracellular pH (pHi) and H+-coupled transmembrane transport of glycine have been studied by means of 31P-NMR, using both aerobic and 'energy starved' cells of the yeast Saccharomyces cerevisiae. The general features of glycine transport in the yeast strain used (NCYC 239) are similar to those already reported for Saccharomyces carlsbergensis and S. cerevisiae, there being two kinetically distinct glycine uptake systems, with pH-independent K1/2 values near 14 and 0.4mM, respectively, but pH-dependent maximal velocities. Glycine transport itself has no measurable effect on pHi in aerobic cells, and only a marginal effect in energy-starved cells, but changes of pHi, imposed by extracellular addition of butyric acid, strongly influence glycine transport. Indeed, the dependence of glycine influx (in energy-starved cells) upon cytoplasmic H+ concentration appears to be third order, showing Hill slopes of 2.7-3.0. A crucial kinetic role for cytoplasmic pH in glycine transport is further indicated by a proportionality between the decline of flux and the decline of pHi produced by various metabolic inhibitors and uncouplers. Extracellular pH (pHo), by contrast, has only a weak effect on glycine influx, showing a Hill slope of 0.5. The major observations can be accommodated by a simple cyclic carrier scheme, in which 2 or more protons are transported along with glycine, but only one extracellular proton binding site dissociates in the testing range, with a pK near 5.5. The model requires a finite membrane potential, which must be somewhat sensitive to both pHi and pHo, and accommodates the discrepancy between measured net proton flux (one per glycine) and the kinetically required proton flux (two or more per glycine) by shunting through other proton-conducting pathways in the yeast membrane.  相似文献   

10.
The ability to move acid/base equivalents across the membrane of identified glial cells was investigated in isolated segmental ganglia of the leech Hirudo medicinalis. The intracellular pH (pHi) of the glial cells was measured with double-barreled, neutral-ligand, ion-sensitive microelectrodes during step changes of the external pH (pHo 7.4-7.0). The rate of intracellular acidification after the decrease in extracellular pH (pHo) was taken as a measure of the rate of acid/base transport across the glial membrane. Taking into account the total intracellular buffering power, the maximum rate of acid/base flux was 0.4 mM/min in CO2/HCO3-free saline, and 3.92 mM/min in the presence of 5% CO2/10 mM HCO-3, suggesting that the acid/base flux was dependent upon HCO3-. The rate of acid influx/base efflux increased both with the external HCO3- concentration and with increasing pHi (and hence HCO3-i). This suggested that the decrease in pHi was due to HCO3- efflux. The rapid decrease of pHi was accompanied by a HCO3--dependent depolarization of the glial membrane from -74 +/- 5 mV (n = 20) to -54 +/- 7 mV (n = 13). Both this depolarization and the rate of intracellular acidification were greatly reduced by the anion exchange inhibitor 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS; 0.3-0.5 mM), but were not affected by the removal of external Cl-. Reduction of the external Na+ concentration to one-tenth normal affected the rate of intracellular acidification only in the presence of CO2/HCO3-: the rate increased within the first 3-5 min after lowering external Na+; after longer exposures in low external Na+ the rate decreased, presumably due to depletion of intracellular Na+. Amiloride (1 mM), which inhibits the Na+-H+ exchange in these cells, had no effect on the rate of intracellular acidification. The intracellular Na activity (aNai) of the glial cells was measured to be 5.2 +/- 1.0 mM (n = 8) in CO2/HCO3-free saline; aNai increased to 7.3 +/- 2.2 mM (n = 8) after the addition of 5% CO2/24 mM HCO3-. Upon a change in pHo to 7.0 in the presence of CO2/HCO3-, aNai decreased by an average of 2 +/- 1.1 mM (n = 5); in CO2/HCO3--free saline external acidification produced a transient increase in aNai. It is concluded that, in the presence of CO2/HCO3-, the rate of intracellular acidification in glial cells is dominated by an outwardly directed, electrogenic Na+-HCO3-cotransport. Neurons, which do not possess this cotransporter, acidify at much lower rates under similar conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The effect of changes in extracellular pH (pHo) and intracellular pH (pHi) on Na+-dependent and Na+-independent inorganic phosphate (Pi) transport in Ehrlich cells was investigated. In the presence of Na+, acutely reducing pHo from 7.30 to 5.50 results first in a transient (approximately 7 min) stimulation of Pi transport. The enhanced rate of transport is a saturable function of the extracellular [H+]; the Ks equals 2.3 X 10(-6) M (pHo 6.68). However, Pi transport is progressively inhibited as pHi falls below 6.50. The effect of pHi on Pi transport measured at various intracellular [Na+] suggests that inhibition develops as a consequence of H+ interaction with an intracellular Na+ site(s) on the Na+-dependent carrier. At pHo 7.4, about 15% of the steady state Pi flux persists in the absence of Na+. However, when pHo is reduced, transport is stimulated to the same extent and with the same time course and kinetic characteristics as in the presence of Na+. Thus, H+ stimulated Pi transport does not require Na+, raising the possibility that the Na+-independent component is mediated by the anion (Cl-) exchanger.  相似文献   

12.
The intracellular pH (pHi) changes resulting from chemotactic factor-induced activation of Na+/H+ exchange in isolated human neutrophils were characterized. Intracellular pH was measured from the equilibrium distribution of [14C]-5,5-dimethyloxazolidine-2,4-dione and from the fluorescence of 6-carboxyfluorescein. Exposure of cells to 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) in 140 mM Na+ medium at extracellular pH (pHo) 7.40 led to a rise in pHi along an exponential time course (rate coefficient approximately 0.55 min-1). By 10 min, a new steady-state pHi was reached (7.75-7.80) that was 0.55-0.60 units higher than the resting pHi of control cells (7.20-7.25). The initial rate of H+ efflux from the cells (approximately 15 meq/liter X min), calculated from the intrinsic intracellular buffering power of approximately 50 mM/pH, was comparable to the rate of net Na+ influx (approximately 17 meq/liter X min), an observation consistent with a 1:1 stoichiometry for Na+/H+ exchange. This counter-transport could be inhibited by amiloride (apparent Ki approximately 75 microM). When either the external ([Na+]o) or internal Na ([Na+]i) concentrations, pHo, or pHi were varied independently, the new steady-state [Na+]i and pHi values in FMLP-stimulated cells were those corresponding to a chemical equilibrium distribution of Na+ and H+ across the cell membrane. By analogy to other activated cells, these results indicate that an alkalinization of pHi in human neutrophils is mediated by a chemotactic factor-induced exchange of internal H+ for external Na+.  相似文献   

13.
Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-containing solutions, aNai fell. The effect of pHo is consistent with titration of a single site with an apparent pK of 6.29. In Na(+)-depleted tissues, increasing [Na+]o from 0 to values ranging from 2.5 to 110 mM increased aNai; the relationship was well described by Michaelis-Menten kinetics. The apparent Km was 15 mM at pHo 7.5 and increased to 134 mM at pHo 6.5, without change in Vmax. In Na(+)-depleted gallbladders, elevating [Na+]o from 0 to 25 mM increased aNai and pHi and caused acidification of a poorly buffered mucosal solution upon stopping the superfusion; lowering pHo inhibited both apical Na+ entry and mucosal solution acidification. Both effects can be ascribed to titration of a single site; the apparent pK's were 7.2 and 7.4, respectively. Diethylpyrocarbonate (DEPC), a histidine-specific reagent, reduced mucosal acidification by 58 +/- 4 or 39 +/- 6% when exposure to the drug was at pHo 7.5 or 6.5, respectively. Amiloride (1 mM) did not protect against the DEPC inhibition, but reduced both apical Na+ entry and mucosal acidification by 63 +/- 5 and 65 +/- 9%, respectively. In the Na(+)-depleted tissues mean pHi was 6.7. Cells were alkalinized by exposure to mucosal solutions containing high concentrations of nicotine or methylamine. Estimates of apical Na+ entry at varying pHi, upon increasing [Na+]o from 0 to 25 mM, indicate that Na+/H+ exchange is active at pHi 7.4. Intracellular H+ stimulated apical Na+ entry by titration of more than one site (apparent pK 7.1, Hill coefficient 1.7). The results suggest that external Na+ and H+ interact with one site of the Na+/H+ exchanger and that cytoplasmic H+ acts on at least two sites. The external titratable group seems to be an imidazolium, which is apparently different from the amiloride-binding site. The dependence of Na+ entry on pHi supports the notion that the Na+/H+ exchanger is operational under normal transport conditions.  相似文献   

14.
Studies of intracellular pH (pHi) in nervous tissue are summarized and recent investigation of intracellular and extracellular pH (pHo) in the isolated brain stem of the lamprey is reviewed. In the lamprey, pHi regulation was studied in single reticulospinal neurons using double-barrel ion-selective microelectrodes (ISMs). In nominally HCO3(-)-free HEPES-buffered media, acute acid loading was followed by a spontaneous recovery of pHi requiring 10-20 min and was associated with a prolonged rise in intracellular Na+. The recovery of pHi was blocked by 1-2 mM amiloride. Amiloride also caused a small rise in pHo. Substitution of external Na+ caused a slow intracellular acidification and extracellular alkalinization. Return of external Na+ reversed these effects. Transition from HEPES to HCO3(-)-buffered media increased the rate of acid extrusion during recovery of pHi. Recovery in HCO3(-)-buffered media was inhibited by 4,4'-diisothio-cyanostilbene-2,2'-disulfonic acid and was slowed after exposure to Cl(-)-free media. Following inhibition of acid extrusion by amiloride, transition to HCO3- media restored pHi recovery. These data indicate that lamprey neurons recover from acute acid loads by both Na+-H+ exchange and an independent HCO3(-)-dependent mechanism. Evidence for HCO3(-)-dependent acid extrusion in other vertebrate cells and the protocols of pHi studies using ISMs are discussed.  相似文献   

15.
Mouse embryos at the two-cell stage are able to recover from an alkaline load. We found that this recovery is mediated by sodium-independent bicarbonate/chloride exchange: intracellular pH (pHi) recovery from alkaline load is inhibited by the anion exchange inhibitor 4,4'-diisothiocyanostilbene disulfonic acid, lack of bicarbonate, or lack of chloride. The dependence of the pHi recovery on extracellular chloride concentration exhibits Michaelis-Menten kinetics. Furthermore, uptake of chloride is inhibited in a dose-dependent manner by extracellular bicarbonate. The Km for external chloride was found to be about 3 mM, with a Ki for external bicarbonate of about 2 mM. The exchanger is active above approximately pH 7.15. These results demonstrate that mouse embryos at the two-cell stage possess a sodium-independent bicarbonate/chloride exchange mechanism that is similar to that found in other mammalian cells. This bicarbonate/chloride exchanger appears to be the sole pHi-regulatory mechanism in the two-cell stage mouse embryo, since our previous results have shown that there are apparently no specific mechanisms active in these cells for relieving acid loads.  相似文献   

16.
This study demonstrates that exposure of log-phase Lactococcus lactis subsp. cremoris 712 cells to mildly acid conditions induces resistance to normally lethal intensities of environmental stresses such as acid, heat, NaCl, H2O2, and ethanol. The intracellular pH (pHi) played a major role in the induction of this multistress resistance response. The pHi was dependent on the extracellular pH (pHo) and on the specific acid used to reduce the pHo. When resuspended in fresh medium, cells were able to maintain a pH gradient even at pHo values that resulted in cell death. Induction of an acid tolerance response (ATR) coincided with an increase in the ability of cells to resist change to an unfavorable pHi; nevertheless, a more favorable pHi was not the sole reason for the increased survival at acid pHo. Cells with an induced ATR survived exposure to a lethal pHo much better than did uninduced cells with a pHi identical to that of the induced cells. Survival following lethal acid shock was dependent on the pHi during induction of the ATR, and the highest survival was observed following induction at a pHi of 5.9, which was the lowest pHi at which growth occurred. Increased acid tolerance and the ability to maintain a higher pHi during lethal acid stress were not acquired if protein synthesis was inhibited by chloramphenicol during adaptation.  相似文献   

17.
Cl-/HCO3- exchange at the apical membrane of Necturus gallbladder   总被引:7,自引:5,他引:2       下载免费PDF全文
The hypothesis of Cl-/HCO3- exchange across the apical membrane of the epithelial cells of Necturus gallbladder was tested by means of measurements of extracellular pH (pHo), intracellular pH (pHi), and Cl- activity (alpha Cli) with ion-sensitive microelectrodes. Luminal pH changes were measured after stopping mucosal superfusion with a solution of low buffering power. Under control conditions, the luminal solution acidifies when superfusion is stopped. Shortly after addition of the Na+/H+ exchange inhibitor amiloride (10(-3) M) to the superfusate, alkalinization was observed. During prolonged (10 min) exposure to amiloride, no significant pHo change occurred. Shortly after amiloride removal, luminal acidification increased, returning to control rates in 10 min. The absence of Na+ in the superfusate (TMA+ substitution) caused changes in the same direction, but they were larger than those observed with amiloride. Removal of Cl- (cyclamate or sulfate substitution) caused a short-lived increase in the rate of luminal acidification, followed by a return to control values (10-30 min). Upon re-exposure to Cl-, there was a transient reduction of luminal acidification. The initial increase in acidification produced by Cl- removal was partially inhibited by SITS (0.5 mM). The pHi increased rapidly and reversibly when the Cl- concentration of the mucosal bathing solution was reduced to nominally 0 mM. The pHi changes were larger in 10 mM HCO3-Ringer's than in 1 mM HEPES-Ringer's, which suggests that HCO3- is transported in exchange for Cl-. In both HEPES- and HCO3-Ringer's, SITS inhibited the pHi changes. Finally, intracellular acidification or alkalinization (partial replacement of NaCl with sodium propionate or ammonium chloride, respectively) caused a reversible decrease or increase of alpha Cli. These results support the hypothesis of apical membrane Cl-/HCO3- exchange, which can be dissociated from Na+/H+ exchange and operates under control conditions. The coexistence at the apical membrane of Na+/H+ and Cl-/HCO3- antiports suggests that NaCl entry can occur through these transporters.  相似文献   

18.
The properties of the Na+/H+ exchange system in the glial cell lines C6 and NN were studied from 22Na+ uptake experiments and measurements of the internal pH (pHi) using intracellularly trapped biscarboxyethyl-carboxyfluorescein. In both cell types, the Na+/H+ exchanger is the major mechanism by which cells recover their pHi after an intracellular acidification. The exchanger is inhibited by amiloride and its derivatives. The pharmacological profile (ethylisopropylamiloride greater than amiloride greater than benzamil) is identical for the two cell lines. Both Na+ and Li+ can be exchanged for H+. Increasing the external pH increases the activity of the exchanger in the two cell lines. In NN cells the external pH dependence of the exchanger is independent of the pHi. In contrast, in C6 cells, changing the pHi value from 7.0 to 6.5 produces a pH shift of 0.6 pH units in the external pH dependence of the exchanger in the acidic range. Decreasing pHi activates the Na+/H+ exchanger in both cell lines. Increasing the osmolarity of the external medium with mannitol produces an activation of the exchanger in C6 cells, which leads to a cell alkalinization. Mannitol action on 22Na+ uptake and the pHi were not observed in the presence of amiloride derivatives. Mannitol produces a modification of the properties of interaction of the antiport with both internal and external H+. It shifts the pHi dependence of the system to the alkaline range and the external pH (pHo) dependence to the acidic range. It also suppresses the interdependence of pHi and pHo controls of the exchanger's activity. NN cells that possess an Na+/H+ exchange system with different properties do not respond to mannitol by an increased activity of the Na+/H+ exchanger. The action of mannitol on C6 cells is unlikely to be mediated by an activation of protein kinase C.  相似文献   

19.
Pretreatment of isolated human neutrophils (resting pHi congruent to 7.25 at pHo 7.40) with 30 mM NH4Cl for 30 min leads to an intracellular acidification (pHi congruen to 6.60) when the NH4Cl prepulse is removed. Thereafter, in 140 mM Na+ medium, pHi recovers exponentially with time (initial rate, approximately 0.12 pH/min) to reach the normal resting pHi by approximately 20 min, a process that is accomplished mainly, if not exclusively, though an exchange of internal H+ for external Na+. This Na+/H+ countertransport is stimulated by external Na+ (Km congruent to 21 mM) and by external Li+ (Km congruent to 14 mM), though the maximal transport rate for Na+ is about twice that for Li+. Both Na+ and Li+ compete as substrates for the same translocation sites on the exchange carrier. Other alkali metal cations, such as K+, Rb+, or Cs+, do not promote pHi recovery, owing to an apparent lack of affinity for the carrier. The exchange system is unaffected by ouabain or furosemide, but can be competitively inhibited by the diuretic amiloride (Ki congruent to 8 microM). The influx of Na+ or Li+ is accompanied by an equivalent counter-reflux of H+, indicating a 1:1 stoichiometry for the exchange reaction, a finding consistent with the lack of voltage sensitivity (i.e., electroneutrality) of pHi recovery. These studies indicate that the predominant mechanism in human neutrophils for pHi regulation after intracellular acidification is an amiloride-sensitive alkali metal cation/H+ exchange that shares a number of important features with similar recovery processes in a variety of other mammalian cell types.  相似文献   

20.
Cytosolic free calcium spiking affected by intracellular pH change   总被引:1,自引:0,他引:1  
The characteristics underlying cytosolic free calcium oscillation were evaluated by superfused dual wave-length microspectrofluorometry of fura-2-loaded single acinar cells from rat pancreas. Application of a physiological concentration of cholecystokinin octapeptide (CCK) (20 pM) induced a small basal increase in cytosolic free calcium concentration ([Ca2+]i) averaging 34 nM above the prestimulation level (69 nM) with superimposed repetitive Ca2+ spike oscillation. The oscillation amplitude averaged 121 nM above the basal increase in [Ca2+]i and occurred at a frequency of one pulse every 49 s. Although extracellular Ca2+ was required for maintenance of high frequency and amplitude of the spikes with increase in basal [Ca2+]i, the primary source utilized for oscillation was intracellular. The threshold of the peak [Ca2+]i amplitude for causing synchronized and same-sized oscillations was less than 300 nM. The [Ca2+]i oscillation was sensitive to intracellular pH (pHi) change. This is shown by the fact that the large pHi shift toward acidification (delta pHi decrease, 0.95) led to a basal increase in [Ca2+]i to the spike peak level with inhibiting Ca2+ oscillation. The pHi shift toward alkalinization (delta pHi increase, 0.33) led to a basal decrease in [Ca2+]i to the prestimulation level, possibly due to reuptake of Ca2+ into the Ca2+ stores, with inhibiting Ca2+ oscillation. Whereas extracellular pH (pHo) change had only minimal effects on Ca2+ oscillation (and/or Ca2+ release from intracellular stores), the extra-Ca2+ entry process, which was induced by higher concentrations of CCK, was totally inhibited by decreasing pHo from 7.4 to 6.5. Thus the major regulatory sites by which H+ affects Ca2+ oscillation are accessible from the intracellular space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号