首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We developed a new method for imaging the movement of targeted proteins in living cancer cells with photostable and bright quantum dots (QDs). QDs were conjugated with various molecules and proteins, such as phalloidin, anti-tubulin antibody and kinesin. These bioconjugated QDs were mixed with a transfection reagent and successfully internalized into living cells. The movements of individual QDs were tracked for long periods of time. Phalloidin conjugated QDs bound to actin filaments and showed almost no movement. In contrast, anti-tubulin antibody conjugated QDs bound to microtubules and revealed dynamic movement of microtubules. Kinesin showed an interesting behavior whereby kinesin came to be almost paused briefly for a few seconds and then moved once again. This is in direct contrast to the smoothly continuous movement of kinesin in an in vitro assay. The maximum velocity of kinesin in cells was faster than that in the in vitro assay. These results suggest that intracellular movement of kinesin is different from that in the in vitro assay. This newly described method will be a powerful tool for investigating the functions of proteins in living cells.  相似文献   

2.
3.
Compact single-domain antibodies (sdAbs) are nearly 13 times smaller than full-size monoclonal antibodies (mAbs) and have a number of advantages for biotechnological applications, such as small size, high specificity, solubility, stability, and great refolding capacity. Carcinoembryonic antigen (CEA) is a tumor-associated glycoprotein expressed in a variety of cancers. Detection of CEA on the tumor cell surface may be carried out using anti-CEA antibodies and conventional fluorescent dyes. Semiconductor quantum dots (QDs) are brighter and more photostable than organic dyes; they provide the possibility for labeling of different recognition molecules with QDs of different colors but excitable with the same wavelength of excitation. In this study, the abilities for specific detection of CEA expressed by tumor cells with anti-CEA sdAbs biotinylated in vitro and in vivo, as well as with anti-CEA mAbs biotinylated in vitro, were compared using flow cytometry and the conjugates of streptavidin with QDs (SA-QDs). The results demonstrated that either in vitro or in vivo biotinylated anti-CEA sdAbs are more sensitive for cell staining compared to biotinylated anti-CEA mAbs. The data also show that simultaneous use of biotinylated sdAbs with highly fluorescent SA-QDs can considerably improve the sensitivity of detection of CEA on tumor cell surfaces.  相似文献   

4.
Quantum dots (QDs) have been used extensively as fluorescent markers in several studies on living cells. Here, we report the synthesis of conjugates based on glutathione (GSH) and QDs (GSH-QDs) and we prove how these functionalized fluorescent probes can be used for staining a freshwater invertebrate called Hydra vulgaris. GSH is known to promote Hydra feeding response by inducing mouth opening. We demonstrate that GSH-QDs as well are able to elicit biological activity in such an animal, which results in the fluorescent staining of Hydra. GSH-QDs, once they reach the gastric region, are internalized by endodermal cells. The efficiency of GSH-QD internalization increases significantly when nanoparticles are coadministrated with free GSH. We also compared the behavior of bare QDs to that of GSH-QDs both in the presence and in the absence of free GSH. The conclusions from these series of experiments point to the presence of GSH binding proteins in the endodermal cell layer and uncover a novel role played by glutathione in this organism.  相似文献   

5.
We utilize cell penetrating peptide functionalized QDs as specific vectors for the intracellular delivery of model fluorescent protein cargos. Multiple copies of two structurally diverse fluorescent proteins, the 27 kDa monomeric yellow fluorescent protein and the 240 kDa multichromophore b-phycoerythrin complex, were attached to QDs using either metal-affinity driven self-assembly or biotin-Streptavidin binding, respectively. Cellular uptake of these complexes was found to depend on the additional presence of cell-penetrating peptides within the QD-protein conjugates. Once inside the cells, the QD conjugates were mostly distributed within endolysosomal compartments, indicating that intracellular delivery of both QD assemblies was primarily driven by endocytotic uptake. Cellular microinjection of QD-fluorescent protein assemblies was also utilized as an alternate delivery strategy that could bypass the endocytic pathway. Simultaneous signals from both the QDs and the fluorescent proteins allowed verification of their colocalization and conjugate integrity upon delivery inside live cells. Due to their intrinsic fluorescence properties, this class of proteins provides a unique tool to test the ability of QDs functionalized with cell penetrating peptides to mediate the intracellular delivery of both small and large size protein cargos. Use of QD-peptide/fluorescent protein vectors may make powerful tools for understanding the mechanisms of nanoparticle-mediated drug delivery.  相似文献   

6.
Clustering of membrane proteins is a dynamic process which can regulate cellular function and signaling. The size of receptor and other membrane protein clusters can in principle be measured in terms of their rotational diffusion. However, in practice, measuring rotation of membrane proteins of live cells has been difficult, largely because of the difficulty of rigidly attaching reporter groups to the molecules of interest. Here we show that polarized photobleaching recovery can detect rotation of membrane proteins genetically tagged with yellow fluorescent protein, YFP. MHC class I molecules were engineered with a rigid, in-sequence, YFP tag followed at the C-terminus by a pair of crosslinkable domains. When crosslinker was added we could detect changes in rotational anisotropy decay consistent with clustering of the MHC molecules. This result points the way to use of engineered fluorescent fusion proteins to measure rotational diffusion in native cell membranes.  相似文献   

7.
Potentials and pitfalls of fluorescent quantum dots for biological imaging   总被引:17,自引:0,他引:17  
Fluorescent semiconductor nanocrystals, known as quantum dots (QDs), have several unique optical and chemical features. These features make them desirable fluorescent tags for cell and developmental biological applications that require long-term, multi-target and highly sensitive imaging. The improved synthesis of water-stable QDs, the development of approaches to label cells efficiently with QDs, and improvements in conjugating QDs to specific biomolecules have triggered the recent explosion in their use in biological imaging. Although there have been many successes in using QDs for biological applications, limitations remain that must be overcome before these powerful tools can be used routinely by biologists.  相似文献   

8.
Versatile superresolution imaging methods, able to give dynamic information of endogenous molecules at high density, are still lacking in biological science. Here, superresolved images and diffusion maps of membrane proteins are obtained on living cells. The method consists of recording thousands of single-molecule trajectories that appear sequentially on a cell surface upon continuously labeling molecules of interest. It allows studying any molecules that can be labeled with fluorescent ligands including endogenous membrane proteins on living cells. This approach, named universal PAINT (uPAINT), generalizes the previously developed point-accumulation-for-imaging-in-nanoscale-topography (PAINT) method for dynamic imaging of arbitrary membrane biomolecules. We show here that the unprecedented large statistics obtained by uPAINT on single cells reveal local diffusion properties of specific proteins, either in distinct membrane compartments of adherent cells or in neuronal synapses.  相似文献   

9.
Lateral diffusion measurements on cell membrane molecules, most commonly accomplished through fluorescence photobleaching recovery (FPR or FRAP), provide information on such molecules' size, environment, and participation in intermolecular interactions. However, difficulties arise in FPR measurements of lateral dynamics of materials, such as visible fluorescent protein (VFP) fusion proteins, where fluorescent intracellular species contribute to the fluorescence recovery signal and thus distort measurements intended to reflect surface molecules only. A new method helps eliminate these difficulties. In total internal reflection interference fringe FPR, interfering laser beams enter a 1.65-numercial aperture (NA) Olympus objective at the periphery of the back focal plane where the NA exceeds 1.38. This creates an extended interference pattern totally internally reflected at the coverslip-medium interface which excites fluorescence only from fluorescent molecules located where the cell contacts the coverslip. The large illuminated area interrogates many more membrane receptors than spot methods and hence obtains more diffusion information per measurement while rejecting virtually all interfering intracellular fluorescence. We report successful measurements of membrane dynamics of both VFP-containing and conventionally labeled molecules by this technique and compare them with results of other FPR methods.  相似文献   

10.
I Ben-Oren  G Peleg  A Lewis  B Minke    L Loew 《Biophysical journal》1996,71(3):1616-1620
In the past it has not been possible to measure optically the membrane potential of cells and collections of cells that are either naturally photosensitive or that can be activated by photolyzable caged transmitter molecules. This paper reports on a unique application of nonlinear optics that can monitor the potential of cellular membranes with a near-infrared source. Among many other singular advantages, this nonlinear optical approach to measuring membrane potential does not activate light sensitive cells or cell suspensions and cellular networks surrounded with photolyzable molecules. To demonstrate this capability we show that the technique can be applied to living photoreceptor cells that are very sensitive to visible light. These cells are ideal for characterizing such a new technique, not only because of their unmatched sensitivity to light, but also because their electrical responses have been extensively characterized (Minks and Selinger, 1992).  相似文献   

11.
This work explores the potential use of cadmium-based quantum dots (QDs) coupled to mycolic acids (MAs) as a fluorescent probe to detect anti-MA antibodies which are biomarkers for tuberculosis (TB). The use of free MAs as antigens for the serodiagnosis of TB is known but has not been developed into a point of care test. This study focuses on the synthesis, solubility, and lateral flow of QDs coupled to MAs. Water-soluble CdSe/ZnS QDs capped with l -cysteine were synthesised and covalently coupled to MAs via amide linkages to form a water-soluble fluorescent probe: MA-CdSe/ZnS QDs. The MA-CdSe/ZnS QDs showed broad absorption bands and coupling, confirmed by the presence of amide bonds in the Fourier-transform infrared (FTIR) spectrum, resulting in a blue shift in fluorescence. Powder X-ray diffraction (XRD) revealed a shift and increase in the number of peaks for MA-CdSe/ZnS QDs relative to the L-cys-CdSe/ZnS QDs, suggesting that coupling changed the crystal structure. The average particle size of MA-CdSe/ZnS QDs was ~3.0 nm. Visual paper-based lateral flow of MA-CdSe/ZnS QDs was achieved on strips of nitrocellulose membrane with both water and membrane blocking solution eluents. The highly fluorescent MA-CdSe/ZnS QDs showed good water solubility and lateral flow, which are important properties for fluorescence sensing applications.  相似文献   

12.
Fluorescence recovery after photobleaching of muscarinic receptors and G protein subunits tagged with cyan or yellow fluorescent protein showed that receptors and G proteins were mobile and not immobilized on the cell membrane. The cyan fluorescent protein-tagged Galpha and yellow fluorescent protein-tagged Gbeta subunits were used to develop sensors that coupled selectively with the M2 and M3 muscarinic receptors. In living Chinese hamster ovary cells, imaging showed that sensors emitted a fluorescence resonance energy transfer signal that was abrogated on receptor activation. When sequentially activated with highly expressed muscarinic receptors and endogenous receptors expressed at low levels, sensor molecules were sensitive to the sequence of activation and the receptor numbers. The results distinguish between models proposing that receptor and G protein types interact freely with each other on the cell membrane or that they function as mutually exclusive multimolecular complexes by providing direct support for the former model in these cells.  相似文献   

13.
The lateral dynamics of proteins and lipids in the mammalian plasma membrane are heterogeneous likely reflecting both a complex molecular organization and interactions with other macromolecules that reside outside the plane of the membrane. Several methods are commonly used for characterizing the lateral dynamics of lipids and proteins. These experimental and data analysis methods differ in equipment requirements, labeling complexities, and further oftentimes give different results. It would therefore be very convenient to have a single method that is flexible in the choice of fluorescent label and labeling densities from single molecules to ensemble measurements, that can be performed on a conventional wide-field microscope, and that is suitable for fast and accurate analysis. In this work we show that k-space image correlation spectroscopy (kICS) analysis, a technique which was originally developed for analyzing lateral dynamics in samples that are labeled at high densities, can also be used for fast and accurate analysis of single molecule density data of lipids and proteins labeled with quantum dots (QDs). We have further used kICS to investigate the effect of the label size and by comparing the results for a biotinylated lipid labeled at high densities with Atto647N-strepatvidin (sAv) or sparse densities with sAv-QDs. In this latter case, we see that the recovered diffusion rate is two-fold greater for the same lipid and in the same cell-type when labeled with Atto647N-sAv as compared to sAv-QDs. This data demonstrates that kICS can be used for analysis of single molecule data and furthermore can bridge between samples with a labeling densities ranging from single molecule to ensemble level measurements.  相似文献   

14.
Quantum dots as strain- and metabolism-specific microbiological labels   总被引:3,自引:0,他引:3  
Biologically conjugated quantum dots (QDs) have shown great promise as multiwavelength fluorescent labels for on-chip bioassays and eukaryotic cells. However, use of these photoluminescent nanocrystals in bacteria has not previously been reported, and their large size (3 to 10 nm) makes it unclear whether they inhibit bacterial recognition of attached molecules and whether they are able to pass through bacterial cell walls. Here we describe the use of conjugated CdSe QDs for strain- and metabolism-specific microbial labeling in a wide variety of bacteria and fungi, and our analysis was geared toward using receptors for a conjugated biomolecule that are present and active on the organism's surface. While cell surface molecules, such as glycoproteins, make excellent targets for conjugated QDs, internal labeling is inconsistent and leads to large spectral shifts compared with the original fluorescence, suggesting that there is breakup or dissolution of the QDs. Transmission electron microscopy of whole mounts and thin sections confirmed that bacteria are able to extract Cd and Se from QDs in a fashion dependent upon the QD surface conjugate.  相似文献   

15.
16.
The correct topology and orientation of integral membrane proteins are essential for their proper function, yet such information has not been established for many membrane proteins. A simple technique called fluorescence protease protection (FPP) is presented, which permits the determination of membrane protein topology in living cells. This technique has numerous advantages over other methods for determining protein topology, in that it does not require the availability of multiple antibodies against various domains of the membrane protein, does not require large amounts of protein, and can be performed on living cells. The FPP method employs the spatially confined actions of proteases on the degradation of green fluorescent protein (GFP) tagged membrane proteins to determine their membrane topology and orientation. This simple approach is applicable to a wide variety of cell types, and can be used to determine membrane protein orientation in various subcellular organelles such as the mitochondria, Golgi, endoplasmic reticulum and components of the endosomal/recycling system. Membrane proteins, tagged on either the N-termini or C-termini with a GFP fusion, are expressed in a cell of interest, which is subject to selective permeabilization using the detergent digitonin. Digitonin has the ability to permeabilize the plasma membrane, while leaving intracellular organelles intact. GFP moieties exposed to the cytosol can be selectively degraded through the application of protease, whereas GFP moieties present in the lumen of organelles are protected from the protease and remain intact. The FPP assay is straightforward, and results can be obtained rapidly.  相似文献   

17.
Biologically conjugated quantum dots (QDs) have shown great promise as multiwavelength fluorescent labels for on-chip bioassays and eukaryotic cells. However, use of these photoluminescent nanocrystals in bacteria has not previously been reported, and their large size (3 to 10 nm) makes it unclear whether they inhibit bacterial recognition of attached molecules and whether they are able to pass through bacterial cell walls. Here we describe the use of conjugated CdSe QDs for strain- and metabolism-specific microbial labeling in a wide variety of bacteria and fungi, and our analysis was geared toward using receptors for a conjugated biomolecule that are present and active on the organism's surface. While cell surface molecules, such as glycoproteins, make excellent targets for conjugated QDs, internal labeling is inconsistent and leads to large spectral shifts compared with the original fluorescence, suggesting that there is breakup or dissolution of the QDs. Transmission electron microscopy of whole mounts and thin sections confirmed that bacteria are able to extract Cd and Se from QDs in a fashion dependent upon the QD surface conjugate.  相似文献   

18.
半导体量子点具有长时间、多目标和灵敏度高等独特的光化学性质,这些特性使量子点成为细胞标记和生物应用中得到了广泛的应用。利用量子点目标定位癌细胞,对于寻找癌变部位具有指导的作用。近年来,利用量子点作为光动力学治疗癌症的能量供体也得到了一定的研究。简单地介绍了量子点独特的光学性质,并从量子点标记癌细胞、可视化癌细胞表面功能和在光动力学治疗癌症等方面综述了量子点在癌症诊断和治疗中的应用。  相似文献   

19.
Intensely fluorescent, colistin-functionalised CdSe/ZnS QDs (Colis-QDs) nanoparticles, are synthesized and used as sensitive probes for the detection of Escherichia coli, a Gram-negative bacteria. Colistin molecules are attached to the terminal carboxyl of the mercaptoacetic acid-capped QDs in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as amide bond promoters. The TEM analysis of bacteria treated with Colis-QDs conjugates showed the accumulation of Colis-QDs in the cell wall of E. coli. Under the recommended working conditions, the method provides a detection limit as few as 28 E. coli cells per mL, which is competitive which more elaborate detection systems. The simplicity of the method together with short analysis time (< 15 min, without including preparation and photoactivation of the Colis-QDs conjugate) make the proposed approach useful as quick bacteria screening system.  相似文献   

20.
Imaging of live cells has been revolutionized by genetically encoded fluorescent probes, most famously green and other fluorescent proteins, but also peptide tags that bind exogenous fluorophores. We report here the development of protein reporters that generate fluorescence from otherwise dark molecules (fluorogens). Eight unique fluorogen activating proteins (FAPs) have been isolated by screening a library of human single-chain antibodies (scFvs) using derivatives of thiazole orange and malachite green. When displayed on yeast or mammalian cell surfaces, these FAPs bind fluorogens with nanomolar affinity, increasing green or red fluorescence thousands-fold to brightness levels typical of fluorescent proteins. Spectral variation can be generated by combining different FAPs and fluorogen derivatives. Visualization of FAPs on the cell surface or within the secretory apparatus of mammalian cells can be achieved by choosing membrane permeant or impermeant fluorogens. The FAP technique is extensible to a wide variety of nonfluorescent dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号