首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli host system is an advantageous choice for simple and inexpensive recombinant protein production but it still presents bottlenecks at expressing soluble proteins from other organisms. Several efforts have been taken to overcome E. coli limitations, including the use of fusion partners that improve protein expression and solubility. New fusion technologies are emerging to complement the traditional solutions. This work evaluates two novel fusion partners, the Fh8 tag (8 kDa) and the H tag (1 kDa), as solubility enhancing tags in E. coli and their comparison to commonly used fusion partners. A broad range comparison was conducted in a small-scale screening and subsequently scaled-up. Six difficult-to-express target proteins (RVS167, SPO14, YPK1, YPK2, Frutalin and CP12) were fused to eight fusion tags (His, Trx, GST, MBP, NusA, SUMO, H and Fh8). The resulting protein expression and solubility levels were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis before and after protein purification and after tag removal. The Fh8 partner improved protein expression and solubility as the well-known Trx, NusA or MBP fusion partners. The H partner did not function as a solubility tag. Cleaved proteins from Fh8 fusions were soluble and obtained in similar or higher amounts than proteins from the cleavage of other partners as Trx, NusA or MBP. The Fh8 fusion tag therefore acts as an effective solubility enhancer, and its low molecular weight potentially gives it an advantage over larger solubility tags by offering a more reliable assessment of the target protein solubility when expressed as a fusion protein.  相似文献   

2.
We have studied the effect of solubilising N-terminal fusion proteins on the yield of target protein after removal of the fusion partner and subsequent purification using immobilised metal ion affinity chromatography. We compared the yield of 45 human proteins produced from four different expression vectors: three having an N-terminal solubilising fusion protein (the GB1-domain, thioredoxin, or glutathione S-transferase) followed by a protease cleavage site and a His tag, and one vector having only an N-terminal His tag. We have previously observed a positive effect on solubility for proteins produced as fusion proteins compared to proteins produced with only a His tag in Escherichia coli. We find this effect to be less pronounced when we compare the yields of purified target protein after removal of the solubilising fusion although large target-dependent variations are seen. On average, the GB1+His fusion gives significantly higher final yields of protein than the thioredoxin+His fusion or the His tag, whereas GST+His gives lower yields. We also note a strong correlation between solubility and target protein size, and a correlation between solubility and the presence of peptide fragments that are predicted to be natively disordered.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
A persistent problem in heterologous protein production is insolubility of the target protein when expressed to high level in the host cell. A widely employed strategy for overcoming this problem is the use of fusion tags. The best fusion tags promote solubility, may function as purification handles and either do not interfere with downstream applications or may be removed from the passenger protein preparation. A novel fusion tag is identified that meets these criteria. This fusion tag is a monomeric mutant of the Ocr protein (0.3 gene product) of bacteriophage T7. This fusion tag displays solubilizing activity with a variety of different passenger proteins. We show that it may be used as a purification handle similar to other fusion tags. Its small size and compact structure are compatible with its use in downstream applications of the passenger protein or it may be removed and purified away from the passenger protein. The use of monomeric Ocr (Mocr) as a complement to other fusion tags such as maltose-binding protein will provide greater flexibility in protein production and processing for a wide variety of protein applications.  相似文献   

4.
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.  相似文献   

5.
Production of milligram quantities of numerous proteins for structural and functional studies requires an efficient purification pipeline. We found that the dual tag, his(6)-tag-maltose-binding protein (MBP), intended to facilitate purification and enhance proteins' solubility, disrupted such a pipeline, requiring additional screening and purification steps. Not all proteins rendered soluble by fusion to MBP remained soluble after its proteolytic removal, and in those cases where the protein remained soluble, standard purification protocols failed to remove completely the stoichiometric amount of his(6)-tagged MBP generated by proteolysis. Both liabilities were alleviated by construction of a vector that produces fusion proteins in which MBP, the his(6)-tag and the target protein are separated by highly specific protease cleavage sites in the configuration MBP-site-his(6)-site-protein. In vivo cleavage at the first site by co-expressed protease generated untagged MBP and his(6)-tagged target protein. Proteins not truly rendered soluble by transient association with MBP precipitated, and untagged MBP was easily separated from the his-tagged target protein by conventional protocols. The second protease cleavage site allowed removal of the his(6)-tag.  相似文献   

6.
Li Y 《Biotechnology letters》2011,33(5):869-881
Fusion expression is a common practice for recombinant protein production. Some fusion tags confer solubility on the target protein whereas others provide affinity handles that facilitate purification. However, the tag usually needs to be removed from the final product, which involves using expensive proteases or hazardous chemicals and requires additional chromatography steps. Self-cleaving tags are a special group of fusion tags that possess inducible proteolytic activity. Combined with appropriate affinity tags, they enable fusion purification, cleavage and target separation to be achieved in a single step, which saves time, labor and cost. This paper reviews currently available self-cleaving fusion tags for recombinant protein production. For each system, an introduction of its key characteristics and a brief discussion of its advantages and disadvantages is given.  相似文献   

7.
It is difficult to imagine any strategy for high-throughput protein expression and purification that does not involve genetically engineered affinity tags. Because of its ability to enhance the solubility and promote the proper folding of its fusion partners, Escherichia coli maltose-binding protein (MBP) is a particularly useful affinity tag. However, not all MBP fusion proteins bind efficiently to amylose resin, and even when they do it is usually not possible to obtain a sample of adequate purity after a single affinity step. To address this problem, we endeavored to incorporate supplemental affinity tags within the framework of an MBP fusion protein. We show that both the nature of the supplemental tags and their location can influence the ability of MBP to promote the solubility of its fusion partners. The most promising configurations for high-throughput protein expression and purification appear to be a fusion protein with a biotin acceptor peptide (BAP) on the N-terminus of MBP and/or a hexahistidine tag (His-tag) on the C-terminus of the passenger protein. Abbreviatoins: BAP, biotin acceptor peptide; EDTA, ethelenediaminetetraacetic acid; IPTG, isopropyl--d-thiogalactopyranoside; MBP, E. coli maltose-binding protein; GFP; green fluorescent protein; Ni-NTA, nickel-nitrilotriacetic acid; ORF, open reading frame; PCR; polymerase chain reaction; R5, polyarginine tag; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TEV, tobacco etch virus; WT, wild-type  相似文献   

8.
We introduce a new method for purifying recombinant proteins expressed in bacteria using a highly specific, inducible, self-cleaving protease tag. This tag is comprised of the Vibrio cholerae MARTX toxin cysteine protease domain (CPD), an autoprocessing enzyme that cleaves exclusively after a leucine residue within the target protein-CPD junction. Importantly, V. cholerae CPD is specifically activated by inositol hexakisphosphate (InsP6), a eukaryotic-specific small molecule that is absent from the bacterial cytosol. As a result, when His6-tagged CPD is fused to the C-terminus of target proteins and expressed in Escherichia coli, the full-length fusion protein can be purified from bacterial lysates using metal ion affinity chromatography. Subsequent addition of InsP6 to the immobilized fusion protein induces CPD-mediated cleavage at the target protein-CPD junction, releasing untagged target protein into the supernatant. This method condenses affinity chromatography and fusion tag cleavage into a single step, obviating the need for exogenous protease addition to remove the fusion tag(s) and increasing the efficiency of tag separation. Furthermore, in addition to being timesaving, versatile, and inexpensive, our results indicate that the CPD purification system can enhance the expression, integrity, and solubility of intractable proteins from diverse organisms.  相似文献   

9.
In proteomics research, generation of recombinant proteins in their native, soluble form with large quantity is often a challenging task. To tackle the expression difficulties, different expression vectors with distinct affinity fusion tags, i.e. pET-43.1a (N-utilization substance A tag), pMAL-cRI (maltose binding protein tag) (MBP tag), pGEX-4T-2 (glutathione S-transferase tag), and pET-15b (hexahistidine tag) were compared for their effects on the productivity and solubility, which were assessed by SDS-PAGE and immunoblotting, of the integrin betaA domain. The incubation temperatures were tested for its effects on these parameters. Our data suggested that MBP tag enhanced the yield and solubility of the betaA domain protein, which can also be recognized using an anti-CD18 antibody, at room temperature incubation. Thus, the nature of fusion partner chosen for expression in bacteria and its incubation temperature would significantly affect the yield and solubility of the recombinant target protein.  相似文献   

10.
Many proteins that accumulate in the form of insoluble aggregates when they are overproduced in Escherichia coli can be rendered soluble by fusing them to E. coli maltose binding protein (MBP), and this will often enable them to fold in to their biologically active conformations. Yet, although it is an excellent solubility enhancer, MBP is not a particularly good affinity tag for protein purification. To compensate for this shortcoming, we have engineered and successfully tested Gateway destination vectors for the production of dual His6MBP-tagged fusion proteins in the cytoplasm and periplasm of E. coli. The MBP moiety improves the yield and solubility of its fusion partners while the hexahistidine tag (His-tag) serves to facilitate their purification. The availability of a vector that targets His6MBP fusion proteins to the periplasm expands the utility of this dual tagging approach to include proteins that contain disulfide bonds or are toxic in the bacterial cytoplasm.  相似文献   

11.
We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification.  相似文献   

12.
The expression of peptides and proteins as fusions to the B1 domain of streptococcal protein G (GB1) is very popular since GB1 often improves the solubility of the target protein and because the first purification step using IgG affinity chromatography is simple and efficient. However, the following protease digest is not always complete or can result in a digest of the target protein. In addition, a further purification step such as RP-HPLC has to be used to get rid of the GB1 tag and undigested fusion protein. Because the protease digest and the following purification step are not only time-consuming but generally also expensive, we tested if GB1 fusion proteins can directly be used for NMR interaction studies using lipids or membrane-mimetics. Based on NMR binding studies using only the GB1 part, this fusion tag does not significantly interact with different membrane-mimetics such as micelles, bicelles, or liposomes. Thus spectral changes observed using GB1-fusion proteins indicate lipid- and membrane interactions of the target protein. The method was initially established to probe membrane interactions of a large number of mutants of the FATC domain of the ser/thr kinase TOR. To demonstrate the usefulness of the approach, we show NMR binding data for the wild type protein and a leucine to alanine mutant.  相似文献   

13.
We have compared four different vectors for expression of proteins with N- or C-terminal hexahistidine (His6) tags in Escherichia coli by testing these on 20 human proteins. We looked at a total recombinant protein production levels per gram dry cell weight, solubility of the target proteins, and yield of soluble and total protein when purified by immobilized metal ion affinity purification. It was found that, in general, both N- and C-terminal His6 tags have a noticeable negative affect on protein solubility, but the effect is target protein specific. A solubilizing fusion tag was able to partly counteract this negative effect. Most target proteins could be purified under denaturing conditions and about half of the proteins could be purified under physiological conditions. The highest protein production levels and yield of purified protein were obtained from a construct with C-terminal His tag. We also observe a large variation in cell growth rate, which we determined to be partly caused by the expression vectors and partly by the targets. This variation was found to be independent of the production level, solubility and tertiary structure content of the target proteins.  相似文献   

14.
融合标签技术及其应用   总被引:4,自引:0,他引:4  
融合标签最初是作为一种有效的工具用于纯化重组蛋白质,近几年的研究表明,融合标签的作用并不局限于此。本文综述了融合标签技术的发展及在生命科学研究中的各种应用,包括重组蛋白质的纯化;目的蛋白质的检测、定向固定;体内生物事件的可视化;提高重组蛋白质的产量;增强重组蛋白质的可溶性及稳定性。  相似文献   

15.
Phage T4 lysozyme is a well folded and highly soluble protein that is widely used as an insertion tag to improve solubility and crystallization properties of poorly behaved recombinant proteins. It has been used in the fusion protein strategy to facilitate crystallization of various proteins including multiple G protein‐coupled receptors, lipid kinases, or sterol binding proteins. Here, we present a structural and biochemical characterization of its novel, metal ions‐binding mutant (mbT4L). We demonstrate that mbT4L can be used as a purification tag in the immobilized‐metal affinity chromatography and that, in many respects, it is superior to the conventional hexahistidine tag. In addition, structural characterization of mbT4L suggests that mbT4L can be used as a purification tag compatible with X‐ray crystallography.  相似文献   

16.
Although most commonly used for protein production, expression of soluble and functional recombinant protein in Escherichia coli is still a major challenge. The development and application of fusion tags that can facilitate protein expression and solubility partly solve this problem, however, under most circumstance, the fusion tags have to be removed by proteases in order to use the proteins. Because the tag removal using proteases increases cost and introduces extra purification steps, it remains a significant problem that must be resolved before being widely used in industry production. Ubiquitin and SUMO have been successfully used to enhance protein expression and solubility. In the last decades, intein has also been widely used in protein production for its self-cleavage property, which could help to remove the fusion tag without any protease. Here, we take the advantages of ubiquitin, SUMO2 and intein in protein expression. We constructed tandem ubiquitin-intein and SUMO2-intein fusion tags, and chose human MMP13 (amino acid 104-274) and eGFP as the passenger proteins that fused to the C-terminus of the tags. These constructs were expressed in E. coli and both MMP13 and eGFP expression and solubility were evaluated. Both tags showed the ability to enhance the solubility of MMP13 and eGFP and improve the expression of eGFP, and the SUMO2-intein having a more significant effect. Both ubiquitin-intein-eGFP and SUMO2-intein-eGFP were purified using Ni-NTA column chromatography and self-cleavaged by changing pH. The recombinant un-tagged eGFP were released and eluted with high homogeneity. In summary, ubiquitin-intein and SUMO2-intein are convenient and useful fusion tags that can enhance the expression, solubility and improve the purification process of the model heterologous protein and these tags may have a good prospect in protein production.  相似文献   

17.
《Gene》1997,192(2):271-281
A novel protein purification system has been developed which enables purification of free recombinant proteins in a single chromatographic step. The system utilizes a modified protein splicing element (intein) from Saccharomyces cerevisiae (Sce VMA intein) in conjunction with a chitin-binding domain (CBD) from Bacillus circulans as an affinity tag. The concept is based on the observation that the modified Sce VMA intein can be induced to undergo a self-cleavage reaction at its N-terminal peptide linkage by 1,4-dithiothreitol (DTT), β-mercaptoethanol (β-ME) or cysteine at low temperatures and over a broad pH range. A target protein is cloned in-frame with the N-terminus of the intein-CBD fusion, and the stable fusion protein is purified by adsorption onto a chitin column. The immobilized fusion protein is then induced to undergo self-cleavage under mild conditions, resulting in the release of the target protein while the intein-CBD fusion remains bound to the column. No exogenous proteolytic cleavage is needed. Furthermore, using this procedure, the purified free target protein can be specifically labeled at its C-terminus.  相似文献   

18.
Sumo is one of the fusion tags commonly used to enhance the expression and the solubility of recombinant proteins. One advantage of using sumo is that the removal of the sumo tag is highly specific because its recognition by a sumo protease is determined by its structural characteristics, instead of the sequence of a short peptide. Recently, it was reported that sumo could also be used as a protease recognition site to facilitate the removal of other fusion tags, such as MBP, when sumo itself is not suitable to enhance the solubility of a particular target protein. Using sumo as a recognition site is highly desirable when the target protein needs to have its native N terminus. However, constructing such a plasmid involves more than one cloning step because the N terminus of the target protein needs to be the next residue after the diglycine of sumo. Here, we report the construction of a new vector with a mutant sumo tag. The incorporation of a Pvu II site near the 3′ end of tag coding sequence enables quick construction of plasmids for producing proteins with native termini. Its usage includes producing recombinant food allergens for studying conformational IgE epitopes.  相似文献   

19.
Cysteine dioxygenase (CDO, EC 1.13.11.20) is a non-heme mononuclear iron enzyme that oxidizes cysteine to cysteinesulfinate. CDO catalyzes the first step in the pathway of taurine synthesis from cysteine as well as the first step in the catabolism of cysteine to pyruvate and sulfate. Previous attempts to purify CDO have been associated with partial or total inactivation of CDO. In an effort to obtain highly purified and active CDO, recombinant rat CDO was heterologously expressed and purified, and its activity profile was characterized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility, and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The approximately 40.3 kDa full-length fusion protein was purified to homogeneity using a three-column scheme, the fusion tag was then removed by digestion with factor Xa, and a final column step was used to purify homogeneous approximately 23 kDa CDO. The purified CDO had high specific activity and kinetic parameters that were similar to those for non-purified rat liver homogenate, including a Vmax of approximately 1880 nmol min-1 mg-1 CDO (kcat=43 min-1) and a Km of 0.45 mM for L-cysteine. The expression and purification of CDO in a stable, highly active form has yielded significant insight into the kinetic properties of this unique thiol dioxygenase.  相似文献   

20.
In this work, we analyzed at high resolution the sugar-binding mode of the recombinant N-terminal ricin-B domain of the hemolytic protein LSLa (LSL(150)) from the mushroom Laetiporus sulphureus and also provide functional in vitro evidence suggesting that, together with its putative receptor-binding role, this module may also increase the solubility of its membrane pore-forming partner. We first demonstrate that recombinant LSL(150) behaves as an autonomous folding unit and an active lectin. We have determined its crystal structure at 1.47?? resolution and also that of the [LSL(150):(lactose)β, γ)] binary complex at 1.67?? resolution. This complex reveals two lactose molecules bound to the β and γ sites of LSL(150), respectively. Isothermal titration calorimetry indicates that LSL(150) binds two lactoses in solution with highly different affinities. Also, we test the working hypothesis that LSL(150) exhibits in vivo properties typical of solubility tags. With this aim, we have fused an engineered version of LSL(150) (LSL(t)) to the N-terminal end of various recombinant proteins. All the designed LSL(150)-tagged fusion proteins were successfully produced at high yield, and furthermore, the target proteins were purified by a straightforward affinity procedure on agarose-based matrices due to the excellent properties of LSL(150) as an affinity tag. An optimized protocol for target protein purification was devised, which involved removal of the LSL(150) tag through in-column cleavage of the fusion proteins with His(6)-tagged TEV endoprotease. These results permitted to set up a novel, lectin-based system for production and purification of recombinant proteins in E. coli cells with attractive biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号