首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Covalent conjugation of disparate peptide and oligonucleotide biomacromolecular species produces peptide–oligonucleotide conjugates (POCs), which are interesting molecules with great potential for use in diverse bioapplications. However, peptide–oligonucleotide conjugation methods are not well established, and the intracellular delivery efficacy of POCs is debatable. Here, we describe a simple method for the synthesis and purification of POCs. When peptides are carefully designed to have a near-neutral charge state, a relatively hydrophobic polarity, and receptor-targeting ligands, synthesis and purification become highly efficient and straightforward. UV–vis, fluorescence, and circular dichroism studies show that both types of molecules mutually influence each other, changing their optical and conformational characteristics in the context of POCs. The combined effect of peptide design strategy, targeting ligands, and relatively hydrophobic property, enables the efficient cellular delivery of POCs.  相似文献   

2.
Peptides and proteins may be tagged with metallic elements in order to use them as imaging reporters or for other applications. The polypeptide of interest is first conjugated to a suitable chelating agent that forms stable complexes with the element of interest. This conjugation step is undertaken either in aqueous or in non-aqueous conditions depending on the solubility of the substrate. For polypeptides of greater than approximately 10 kDa in size, this is normally done in aqueous medium. Most commonly the chelators are reacted with lysine amino groups. The protein is first desalted into a suitable buffer at pH 8-9 and a molar excess of a bifunctional chelating agent is added. After a suitable period of incubation, excess, unreacted or hydrolyzed chelator is removed and the protein conjugate is desalted into an acidic buffer. The conjugate can then be tagged by addition of a suitable metal salt followed, if necessary, by removal of unchelated metal. As described in the protocol that follows, the entire conjugation, purification and labeling procedure takes about 2 d.  相似文献   

3.
A general procedure, based on a new activated alkyne linker, for the preparation of peptide-oligonucleotide conjugates (POCs) on solid support has been developed. With this linker, conjugation is effective at room temperature (RT) in millimolar concentration and submicromolar amounts. This is made possible since the use of a readily attachable activated triple bond linker enhances the Cu(I) catalyzed 1,3-dipolar cycloaddition ('click' reaction). The preferred scheme for conjugate preparation involves sequential conjugation to oligonucleotides on solid support of (i) an H-phosphonate-based aminolinker; (ii) the triple bond donor p-(N-propynoylamino)toluic acid (PATA); and (iii) azido-functionalized peptides. The method gives conversion of oligonucleotide to the POC on solid support, and only involves a single purification step after complete assembly. The synthesis is flexible and can be carried out without the need for specific automated synthesizers since it has been designed to utilize commercially available oligonucleotide and peptide derivatives on solid support or in solution. Methodology for the ready conversion of peptides into 'clickable' azidopeptides with the possibility of selecting either N-terminus or C-terminus connection also adds to the flexibility and usability of the method. Examples of synthesis of POCs include conjugates of oligonucleotides with peptides known to be membrane penetrating and nuclear localization signals.  相似文献   

4.
A new and more efficient route to the synthesis of branched PEG for protein conjugation, bearing a reporter dipeptide Met-betaAla, is described, which allows better purification of the final product by ion exchange chromatography. The product has the combined advantages of an 'umbrella-like' branched structure, which allows a better coverage of the protein surface, and the presence of the dipeptide Met-betaAla which has been used to detect the position of PEGylation within the peptide sequence.  相似文献   

5.
Europium chelates conjugated with peptide ligands are routinely used as probes for conducting in vitro binding experiments. The presence of unchelated Eu ions in these formulations gives high background luminescence and can lead to poor results in binding assays. In our experience, the reported methods for purification of these probes do not achieve adequate removal of unchelated metal ions in a reliable manner. In this work, a xylenol orange-based assay for the quantification of unchelated metal ions was streamlined and used to determine levels of metal ion contamination as well as the success of metal ion removal on attempted purification. We compared the use of Empore chelating disks and Chelex 100 resin for the selective removal of unchelated Eu ions from several Eu-diethylenetriaminepentaacetic acid chelate–peptide conjugates. Both purification methods gave complete and selective removal of the contaminant metal ions. However, Empore chelating disks were found to give much higher recoveries of the probes under the conditions used. Related to the issue of probe recovery, we also describe a significantly more efficient method for the synthesis of one such probe using Rink amide AM resin in place of Tentagel S resin.  相似文献   

6.
A method was developed for the synthesis of oligonucleotide-cationic peptide conjugates in solution phase by disulfide bond formation. Precipitation was avoided by the easily removable triethylammonium trifluoroacetate (TEATFAc) salt which served at the same time as a buffer of the reaction mixture. The fast and high yielding disulfide bond formation was due to the Npys thio protecting and activating group of Cys. A solution of the free 5′-thiol modified oligonucleotide obtained from Poly-Pak? purification was used for conjugation.  相似文献   

7.
A method was developed for the synthesis of oligonucleotide-cationic peptide conjugates in solution phase by disulfide bond formation. Precipitation was avoided by the easily removable triethylammonium trifluoroacetate (TEATFAc) salt which served at the same time as a buffer of the reaction mixture. The fast and high yielding disulfide bond formation was due to the Npys thio protecting and activating group of Cys. A solution of the free 5-thiol modified oligonucleotide obtained from Poly-Pak purification was used for conjugation.  相似文献   

8.
Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody purification, the antibodies are characterized based on their affinity or specificity. An efficient approach for characterization of peptide antibodies is epitope mapping using peptide based assays. This review describes standard solid-phase approaches for generation of peptide antibodies with special emphasis on peptide selection, generation of peptide conjugates for immunization and characterization of the resulting peptide antibodies.  相似文献   

9.
The detection of human malignancies by near-infrared (NIR) fluorescence will require the conjugation of cancer-specific ligands to NIR fluorophores that have optimal photoproperties and pharmacokinetics. IRDye78, a tetra-sulfonated heptamethine indocyanine NIR fluorophore, meets most of the criteria for an in vivo imaging agent, and is available as an N-hydroxysuccinimide ester for conjugation to low-molecular-weight ligands. However, IRDye78 has a high charge-to-mass ratio, complicating purification of conjugates. It also has a potentially labile linkage between fluorophore and ligand. We have developed an ion-pairing purification strategy for IRDye78 that can be performed with a standard C18 column under neutral conditions, thus preserving the stability of fluorophore, ligand, and conjugate. By employing parallel evaporative light scatter and absorbance detectors, all reactants and products are identified, and conjugate purity is maximized. We describe reversible and irreversible conversions of IRDye78 that can occur during sample purification, and describe methods for preserving conjugate stability. Using seven ligands, spanning several classes of small molecules and peptides (neutral, charged, and/or hydrophobic), we illustrate the robustness of these methods, and confirm that IRDye78 conjugates so purified retain bioactivity and permit NIR fluorescence imaging of specific targets.  相似文献   

10.
Oligomers with two identical peptide nucleic acid sequences joined by a flexible hairpin linker (bisPNA) can stably bind to specific DNA sequences without altering plasmid supercoiling, thus offering a unique opportunity to attach various functional entities to high molecular weight DNA. Current synthetic approaches, however, severely limit the possibility to link peptides or other chemical moieties (i.e., sugars, oligonucleotides, etc.) to bisPNA. Here we report a novel strategy for the synthesis of bisPNA-peptide conjugates in which chemoselective ligation of bisPNA to peptides was accomplished through oxime formation between an oxy-amine-containing peptide and a bisPNA-methyl ketone (complementary modifications can also be used). The described synthesis is highly efficient, does not require a protection strategy, and is carried out under mild aqueous conditions. Through this methodology long peptide sequences in either C to N or N to C polarity can be linked to bisPNA. In addition, this protocol makes the conjugation of cysteine-containing peptides feasible and allows disulfide bond formation to be controlled. This same approach can be exploited to link oligonucleotides, sugars, or other chemical entities to bisPNA.  相似文献   

11.
We report the synthesis and characterization of a cyclic peptide analogue of the loop III region of platelet-derived growth factor (PDGF) B-chain sequence, cyclo(73Arg-Lys-Ile-Glu-Ile-Val-Arg-Lys-Lys81-Cys), incorporating a C-terminus cysteine residue for the conjugation to a carrier protein. The synthesis involved solid-phase chemistry, utilizing Fmoc-tBu chemistry and acid labile side-chain protecting groups, followed by 'head-to-tail' cyclization using the allyl-protected glutamic acid anchored on its side chain to the solid support with HATU/HOAt as the coupling agent. Conformational differences between the cyclic and its linear counterpart PDGF peptides were determined by circular dichroism measurements in aqueous media. High titre antisera were raised to both cyclic and linear peptide immunogens. Antisera raised to the cyclic peptide cross-reacted with PDGF-BB in both Western blot and ELISA, whereas antisera raised to the linear peptide had no reactivity with PDGF-BB. The cyclic peptide (conformational design analogue) produces an immunogen which is able to antigenically mimic the secondary structure of loop III of PDGF-BB and forms a basis from which further small molecular mimetics of PDGF may be designed for use as both immunogens and also potential agonists/antagonists of PDGF. Similarly constructed immunogens may also be useful in the design of vaccines which direct responses to loop regions in other target proteins.  相似文献   

12.
Immobilized metal ion affinity chromatography (IMAC) is a useful method for purification of synthetic peptides with an N-terminal metal-binding amino acid such as His, Trp, or Cys, especially when such residues are not present in other parts of the molecule. In solid phase peptide synthesis (SPPS), capping with acetic anhydride will, in principle, produce truncated peptides as the only side-products due to incomplete couplings. Consequently, only the desired product will carry the affinity label. Most of the impurities, therefore, can be removed by a single passage through an IMAC column. Some representative examples are presented, where fairly large peptides (30-40 amino acid residues) were efficiently purified by this approach.  相似文献   

13.
This protocol describes the step-by-step procedure for the synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB), an agent widely used for labeling proteins and peptides with the positron-emitting radionuclide 18F. The protocols for the synthesis of unlabeled SFB and the quaternary salt precursor 4-formyl-N,N,N-trimethyl benzenaminium trifluoromethane sulfonate also are described. For the [18F]SFB synthesis, the quaternary salt is first converted to 4-[18F]fluorobenzaldehyde. Oxidation of the latter provides 4-[18F]fluorobenzoic acid, which is converted to [18F]SFB by treatment with N,N-disuccinimidyl carbonate. Using this method, [18F]SFB can be synthesized in decay-corrected radiochemical yields of 30%-35% and a specific radioactivity of 11-12 GBq micromol(-1). The total synthesis and purification time required is about 80 min, starting from delivery of the [18F]fluoride. [18F]SFB remains an optimal reagent for labeling proteins and peptides with 18F because of good conjugation yields and metabolic stability.  相似文献   

14.
Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the modified peptide. The results show that one to seven fluorescein molecules or one to four rhodamine molecules were attached to the lysine residue(s) of the I-domain protein. No modifications were found in the metal ion-dependent adhesion site (MIDAS), which is an important binding region of the I-domain.  相似文献   

15.
Dendritic peptides, often presented as multiple antigen peptides (MAPs), are widely used in immunological-based fields of research, although their synthesis can be extremely challenging. In this paper, a tetrameric dendritic MAP-like presentation of the retinoblastoma protein [649-654] sequence (4RB(649-654)) has been prepared using solid-phase peptide synthesis (SPPS) methods. During the synthesis of this dendritic molecule, numerous modifications to the synthetic protocols were examined. These modifications included the introduction of a combination Boc- and Fmoc-chemistry approach and also the use of 1,8-diazabicyclo[5.4.0]-undec-7-ene as a Fmoc-deprotection agent. The use in combination of Boc- and Fmoc-based synthetic strategies resulted in the production of the desired peptide molecule, 4RB(649-654), in high purity and acceptable yields following purification by reversed phase HPLC.  相似文献   

16.
The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved.  相似文献   

17.
To target the nucleus of specific cells, trifunctional radiopharmaceuticals are required. We have synthesized acridine orange derivatives which comprise an imidazole-2-carbaldehyde function for coordination to the [Re(CO)?](+) or [(99m)Tc(CO)?](+) core. Upon coordination, this aldehyde is activated and rapidly forms imines with amines from biological molecules. This metal-mediated imine formation allows for the conjugation of a nuclear targeting portion with a specific cell receptor binding function directly on the metal. With this concept, we have conjugated the acridine orange part to a bombesin peptide directly on the (99m)Tc core and in one step. In addition, a linker containing an integrated disulfide has been coupled to bombesin. LC/MS study showed that the disulfide was reductively cleaved with a 60 min half-life time. This concept enables the combination of a nucleus targeting agent with a specific cell receptor molecule directly on the metal without the need of separate conjugation prior to labeling, thus, a modular approach. High uptake of the BBN conjugate into PC-3 cells was detected by fluorescence microscopy, whereas uptake into B16BL6 cells was negligible.  相似文献   

18.
A gene fusion approach to simplify protein immobilization and purification is described. A gene encoding the protein of interest is fused to a gene fragment encoding the affinity peptide Ala-His-Gly-His-Arg-Pro. The expressed fusion proteins can be purified using immobilized metal affinity chromatography. A vector, designed to ensure obligate head-to-tail polymerization of oligonucleotide linkers was constructed by in vitro mutagenesis. A linker encoding the affinity peptide, was synthesized and polymerized to two, four and eight copies. These linkers were fused to the 3' end of a structural gene encoding a two-domain protein A molecule, ZZ, and to the 5' end of a gene encoding beta-galactosidase. Fusion proteins, of both types, with zero or two copies of the linker showed little or no binding to immobilized Zn2+, while a relatively strong interaction could be observed for the fusions based on four or eight copies of the linker. Using a pH gradient, the ZZ fusions were found to be eluted from the resin at different pHs depending on the number of the affinity peptide. These results demonstrate that genetic engineering can be used to facilitate purification and immobilization of proteins to immobilized Zn2+ and that the multiplicity of the affinity peptide is an important factor determining the binding characteristics.  相似文献   

19.
A simple method is described for the application onto HPLC columns of very crude or alternatively poorly soluble polypeptide samples prior to their chromatographic purification. The procedure involves the batch pre-adsorption of the crude polypeptide mixture from a dilute solution onto an appropriate preparative-grade chromatographic adsorbent, removal of the solvent by rotary evaporation or lyophilisation and then dry-packing the pre-adsorbed chromatographic material into guard column cartridges of suitable dimensions. The polypeptide products can then be eluted either by isocratic or gradient elution methods through the cartridge coupled in tandem with prepacked semi-preparative HPLC columns. This method has been successfully utilised for the routine RP-HPLC purification of polar and hydrophobic polypeptides prepared by solid phase peptide synthesis (SPPS) methods as well as peptide derivatives and intermediates used as part of SPPS procedures.  相似文献   

20.
Semiconductor quantum dots (QDs) are proved to be unique fluorescent labels providing excellent possibilities for high-throughput detection and diagnostics. To explore in full QDs’ advantages in brightness, photostability, large Stokes shift, and tunability by size fluorescence emission, they should be rendered stable in biological fluids and tagged with the target-specific capture molecules. Ideal QD-based nanoprobes should not exceed 15 nm in diameter and should contain on their surface multiple copies of homogeneously oriented highly active affinity molecules, for example, antibodies (Abs). Direct conjugation of QDs with the Abs through cross-linking of QDs’ amines with the sulfhydryl groups issued from the reduced Abs’ disulfide bonds is the common technique. However, this procedure often generates conjugates in which the number of functionally active Abs on the surface of QDs does not always conform to expectations and is often low. Here we have developed an advanced procedure with the optimized critical steps of Ab reduction, affinity purification, and QD–Ab conjugation. We succeeded in reducing the Abs in such a way that the reduction reaction yields highly functional, partially cleaved, 75-kDa heavy–light Ab fragments. Affinity purification of these Ab fragments followed by their tagging with the QDs generates QD–Ab conjugates with largely improved functionality compared with those produced according to the standard procedures. The developed approach can be extended to conjugation of any type of Ab with different semiconductor, noble metal, or magnetic nanocrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号