首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes a new protein digestion protocol in which a variety of detergents can be used to solubilize membrane proteins and facilitate trypsin digestion with higher efficiency. In this protocol, proteins are dissolved in solutions containing various detergents and directly incorporated into a polyacrylamide gel matrix without electrophoresis. Detergents are subsequently eliminated from the gel matrix while proteins are still immobilized in the gel matrix. After in-gel digestion of proteins, LC-MS/MS is used to analyze the extracted peptides for protein identification. The uniqueness of the protocol is that it allows usage of a variety of detergents in the starting solution without interfering with LC-MS/MS analysis. We hereby demonstrate that different detergents, including ionic SDS, non-ionic Triton X-100 and n-octyl beta-d-glucopyranoside, and zwitterionic CHAPS, can be used to achieve maximum solubilization of membrane proteins with minimal interference with LC-MS/MS analysis. Enhanced digestions, i.e. improved number and intensity of detected peptides, are also demonstrated for digestion-resistant proteins such as myoglobin, ubiquitin, and bacteriorhodopsin. An additional advantage of the Tube-Gel digestion protocol is that, even without electrophoresis separation, it allows high throughput analysis of complex protein mixtures when coupled with LC-MS/MS. The protocol was used to analyze a complex membrane protein mixture prepared from prostate cancer cells. The protocol involves only a single digestion and 2.5 h of LC-MS/MS analysis and identified 178 membrane proteins. In comparison, the same membrane fraction was resolved by SDS-PAGE, and 20 gel slices were excised and individually digested and analyzed by LC-MS/MS. The more elaborate effort demanded more than 50 h of LC-MS/MS analysis and identified 268 proteins. The new Tube-Gel digestion protocol is an alternative method for high throughput analysis of membrane proteins.  相似文献   

2.
Tryptic digestion of proteins continues to be a workhorse of proteomics. Traditional tryptic digestion requires several hours to generate an adequate protein digest. A number of enhanced accelerated digestion protocols have been developed in recent years. Nonetheless, a need still exists for new digestion strategies that meet the demands of proteomics for high-throughput and rapid detection and identification of proteins. We performed an evaluation of direct tryptic digestion of proteins on a MALDI target plate and the potential for integrating RP HPLC separation of protein with on-target tryptic digestion in order to achieve a rapid and effective identification of proteins in complex biological samples. To this end, we used a Tempo HPLC/MALDI target plate deposition hybrid instrument (ABI). The technique was evaluated using a number of soluble and membrane proteins and an MRC5 cell lysate. We demonstrated that direct deposition of proteins on a MALDI target plate after reverse-phase HPLC separation and subsequent tryptic digestion of the proteins on the target followed by MALDI TOF/TOF analysis provided substantial data (intact protein mass, peptide mass and peptide fragment mass) that allowed a rapid and unambiguous identification of proteins. The rapid protein separation and direct deposition of fractions on a MALDI target plate provided by the RP HPLC combined with off-line interfacing with the MALDI MS is a unique platform for rapid protein identification with improved sequence coverage. This simple and robust approach significantly reduces the sample handling and potential loss in large-scale proteomics experiments. This approach allows combination of peptide mass fingerprinting (PMF), MS/MS peptide fragment fingerprinting (PPF) and whole protein MS for both protein identification and structural analysis of proteins.  相似文献   

3.
A miniaturized tryptic digestion protocol for protein analysis has been developed, which works well for small amounts of proteins using small volume of reagents. The protocol starts from 10μL sample volume with total protein content in the low pmol or fmol range (alternatively expressed, in the low ng range). After adding various reagents the total volume of the tryptic digest will increase to 15μL only. This is especially advantageous for nano-HPLC-MS or MALDI analysis which requires (and allows) analysis of few μL aliquots only. Efficiency of the protocol was tested using nano-HLPC-MS(MS). The results show that the developed miniaturized digestion protocol performs at least as well, possibly even better, than conventional protocols using large sample amounts; and is far superior to digestion performed in larger volumes followed by solvent evaporation/resolvation. This is reflected both in signal intensities in MS and in the number of proteins identified by MS/MS.  相似文献   

4.
The core prerequisites for an efficient proteome-scale analysis of mammalian membrane proteins are effective isolation, solubilization, digestion and multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). This protocol is for analysis of the mammalian membrane proteome that relies on solubilization and tryptic digestion of membrane proteins in a buffer containing 60% (vol/vol) methanol. Tryptic digestion is followed by strong cation exchange (SCX) chromatography and reversed phase (RP) chromatography coupled online with MS/MS for protein identification. The use of a methanol-based buffer eliminates the need for reagents that interfere with chromatographic resolution and ionization of the peptides (e.g., detergents, chaotropes, inorganic salts). Sample losses are minimized because solubilization and digestion are carried out in a single tube avoiding any sample transfer or buffer exchange between these steps. This protocol is compatible with stable isotope labeling at the protein and peptide level, enabling identification and quantitation of integral membrane proteins. The entire procedure--beginning with isolated membrane fraction and finishing with MS data acquisition--takes 4-5 d.  相似文献   

5.
A procedure has been developed for protein identification using mass spectrometry (MS) that incorporates sample cleanup, preconcentration, and protein digestion in a single-stage system. The procedure involves the adsorption of a protein, or protein mixture, from solution onto a hydrophobic resin that is contained within a microcolumn. Sample loading is accomplished by flowing the protein solution through the microcolumn, where the protein adsorbs to the hydrophobic surface. The protein is digested while still bound to the hydrophobic surface by flowing a buffered trypsin solution through the column bed. The peptide fragments are subsequently eluted for detection by MALDI or ESI-MS. The procedure is demonstrated using dilute protein samples containing high concentrations of salt, urea, and modest amount of sodium dodecyl sulfate relative to protein. Peptide fragments are also detected by MS from a 500 nM bacteriorhodopsin solution digested in a microcolumn. In this case, a combined cyanogen bromide/trypsin digestion was performed in-column. The procedure is applied to the MALDI-MS/MS identification of proteins present in an individual fraction collected by ion exchange HPLC separation of E. coli total cell extract. An additional application is illustrated in the analysis of a human plasma fraction. A total of 14 proteins, which were present in the sample at sub-micromolar concentrations, were identified from ESI-MS/MS. The microcolumn digestion procedure represents the next step toward a system for fully automated protein analysis through capture and digestion of the adsorbed protein on hydrophobic surfaces.  相似文献   

6.
Sample preparation, especially protein and peptide fractionation prior to identification by mass spectrometry (MS), is typically applied to reduce sample complexity. The second key element in this process is proteolytic digestion, which is performed most often with trypsin. Optimization of this step is an important factor in order to achieve both speed and better performance of proteomic analysis, and tryptic digestion prior to the MS analysis has been a topic of many studies. To date, only a few studies have paid attention to the negative interaction between the proteolytic enzyme and sample components, and sample losses caused by these interactions. In this study, we demonstrated impaired activity after "in solution" tryptic digestion of plasma proteins caused by a potent trypsin inhibitor family, inter-alpha inhibitor proteins. Sample boiling followed by gel electrophoretic separation and "in-gel" digestion drastically improved both the number of identified proteins and the sequence coverage in subsequent LC-ESI-MS/MS. The present investigations show that a thorough validation is necessary when "in solution" digestion followed by LC-MS analysis of complex biological samples is performed. The parallel use of two or more different mass spectrometers can also yield additional information and contribute to further method validation.  相似文献   

7.
Mass spectrometry (MS) coupled to affinity purification is a powerful approach for identifying protein-protein interactions and for mapping post-translational modifications. Prior to MS analysis, affinity-purified proteins are typically separated by gel electrophoresis, visualized with a protein stain, excised, and subjected to in-gel digestion. An inherent limitation of this series of steps is the loss of protein sample that occurs during gel processing. Although methods employing in-solution digestion have been reported, they generally suffer from poor reaction kinetics. In the present study, we demonstrate an application of a microfluidic processing device, termed the Proteomic Reactor, for enzymatic digestion of affinity-purified proteins for liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Use of the Proteomic Reactor enabled the identification of numerous ubiquitinated proteins in a human cell line expressing reduced amounts of the ubiquitin-dependent chaperone, valosin-containing protein (VCP). The Proteomic Reactor is a novel technology that facilitates the analysis of affinity-purified proteins and has the potential to aid future biological studies.  相似文献   

8.
This work presents a comparative evaluation of several detergent‐based sample preparation workflows for the MS‐based analysis of bacterial proteomes, performed using the model organism Escherichia coli. Initially, RapiGest‐ and SDS‐based buffers were compared for their protein extraction efficiency and quality of the MS data generated. As a result, SDS performed best in terms of total protein yields and overall number of MS identifications, mainly due to a higher efficiency in extracting high molecular weight (MW) and membrane proteins, while RapiGest led to an enrichment in periplasmic and fimbrial proteins. Then, SDS extracts underwent five different MS sample preparation workflows, including: detergent removal by spin columns followed by in‐solution digestion (SC), protein precipitation followed by in‐solution digestion in ammonium bicarbonate or urea buffer, filter‐aided sample preparation (FASP), and 1DE separation followed by in‐gel digestion. On the whole, about 1000 proteins were identified upon LC‐MS/MS analysis of all preparations (>1100 with the SC workflow), with FASP producing more identified peptides and a higher mean sequence coverage. Each protocol exhibited specific behaviors in terms of MW, hydrophobicity, and subcellular localization distribution of the identified proteins; a comparative assessment of the different outputs is presented.  相似文献   

9.
A simple method for effective analysis of various proteins has been developed, including membrane proteins, with LC-MS/MS, using CNBr and acetic acid cleavage in one reaction for the digestion of both the M/ and /D/ positions within the target proteins. This dual chemical reaction has been compared with traditional CNBr or an acid cleavage method using a rat kidney membrane fraction and it showed an advantage of the dual reaction with respect to a high number of peptides detected and a high protein recovery. Furthermore, when this dual chemical reaction was combined with trypsin digestion, the number of proteins surprisingly increased approximately 3.0 times more than in the cases with the trypsin digestion only. It was also 1.9 times more than in cases dealing with Tube-Gel trypsin digestion, which is one of the most efficient digestion methods. In addition, it was shown that this dual chemical reaction could be applied to an in-gel digestion. Using the combination of the chemical and enzyme reaction, 172 proteins including 95 membrane proteins were identified. This indicated that this method is one of the efficient systems in single MS/MS analysis. In particular, many membrane proteins identified in this study were detected by a new combination, but not by a traditional trypsin digestion method.  相似文献   

10.
We compared detection sensitivity and protein sequence coverage of the adenovirus type 5 proteome achievable by liquid chromatography and tandem mass spectroscopy (LC/MS/MS) using three sample preparation and clean up methods. Tryptic digestion was performed on either purified viral proteins or whole virus, and followed by shotgun sequencing using tandem mass spectrometry for peptide identification. We used a recombinant adenovirus type 5 as a test system. The methods included separation of adenoviral proteins by reversed-phase high-performance liquid chromatography followed by tryptic digestion and analysis by LC/MS/MS. Alternatively, the purified whole virus was digested with trypsin and the peptides separated either by one-dimensional (reversed-phase) or by two-dimensional (cation exchange and reversed-phase) chromatography and analyzed by tandem mass spectrometry. A total of 11 protein species were identified from 154 peptides. All of the major viral proteins were found. In addition, two minor proteins, the 23 kDa viral protease and the late L1 protein, were identified for the first time by chromatography based assays. The 23 kDa viral protease, present at only 10 copies per virus, and representing 0.2% of the protein content of the virus, was detected by the 2D LC/MS/MS analysis of the whole virus digest from a sample containing only 70 fmols of the protein. This demonstrates the high sensitivity and selectivity of the method. The 2D LC/MS/MS analysis of the whole virus digest was also able to detect all viral proteins with copy numbers at or above 10/virus particle, with broad coverage of the amino acid sequences. Coverage ranged from 2 to 54%, a majority between 20 and 35%, suggesting the possibility of using this analysis to assess the purity of the virus preparations. This broad coverage may also provide a useful approach to identify posttranslational modifications on the structural proteins of the adenovirus.  相似文献   

11.
The identification and validation of the targets of active compounds identified in cell-based assays is an important step in preclinical drug development. New analytical approaches that combine drug affinity pull-down assays with mass spectrometry (MS) could lead to the identification of new targets and druggable pathways. In this work, we investigate a drug-target system consisting of ampicillin- and penicillin-binding proteins (PBPs) to evaluate and compare different amino-reactive resins for the immobilization of the affinity compound and mass spectrometric methods to identify proteins from drug affinity pull-down assays. First, ampicillin was immobilized onto various amino-reactive resins, which were compared in the ampicillin-PBP model with respect to their nonspecific binding of proteins from an Escherichia coli membrane extract. Dynal M-270 magnetic beads were chosen to further study the system as a model for capturing and identifying the targets of ampicillin, PBPs that were specifically and covalently bound to the immobilized ampicillin. The PBPs were identified, after in situ digestion of proteins bound to ampicillin directly on the beads, by using either one-dimensional (1-D) or two-dimensional (2-D) liquid chromatography (LC) separation techniques followed by tandem mass spectrometry (MS/MS) analysis. Alternatively, an elution with N-lauroylsarcosine (sarcosyl) from the ampicillin beads followed by in situ digestion and 2-D LC-MS/MS analysis identified proteins potentially interacting noncovalently with the PBPs or the ampicillin. The in situ approach required only little time, resources, and sample for the analysis. The combination of drug affinity pull-down assays with in situ digestion and 2-D LC-MS/MS analysis is a useful tool in obtaining complex information about a primary drug target as well as its protein interactors.  相似文献   

12.
An optimization and comparison of trypsin digestion strategies for peptide/protein identifications by microLC-MS/MS with or without MS compatible detergents in mixed organic-aqueous and aqueous systems was carried out in this study. We determine that adding MS-compatible detergents to proteolytic digestion protocols dramatically increases peptide and protein identifications in complex protein mixtures by shotgun proteomics. Protein solubilization and proteolytic efficiency are increased by including MS-compatible detergents in trypsin digestion buffers. A modified trypsin digestion protocol incorporating the MS compatible detergents consistently identifies over 300 proteins from 5 microg of pancreatic cell lysates and generates a greater number of peptide identifications than trypsin digestion with urea when using LC-MS/MS. Furthermore, over 700 proteins were identified by merging protein identifications from trypsin digestion with three different MS-compatible detergents. We also observe that the use of mixed aqueous and organic solvent systems can influence protein identifications in combinations with different MS-compatible detergents. Peptide mixtures generated from different MS-compatible detergents and buffer combinations show a significant difference in hydrophobicity. Our results show that protein digestion schemes incorporating MS-compatible detergents generate quantitative as well as qualitative changes in observed peptide identifications, which lead to increased protein identifications overall and potentially increased identification of low-abundance proteins.  相似文献   

13.
An efficient protocol for in-gel digestion of Coomassie-stained protein spots has been established for mass analysis by matrix-assisted laser desorption/ionization-mass spectrometry (MS) and for tandem mass spectrometry (MS/MS). Identification of Vigna mungo leaf proteome from two-dimensional gel electrophoresis was done employing the protocol. About 300 proteins spots were consistently detected in three replicate gels. Optimization of the destaining process, digestion using 25 ng/μl trypsin in 20 μl trypsin buffer, and omission of peptide extraction step significantly increased the number of matched peptides and sequence coverage. Reliable characterization of 109 proteins by MS as well as tandem sequencing by MS/MS (PRIDE Accession no. 15318) suggests the potential application of the modified protocol for high throughput proteome analysis to unravel disputes in characterization of plant proteins in fundamental or applied research.  相似文献   

14.
Ihling C  Sinz A 《Proteomics》2005,5(8):2029-2042
The basic problem of complexity poses a significant challenge for proteomic studies. To date two-dimensional gel electrophoresis (2-DE) followed by enzymatic in-gel digestion of the peptides, and subsequent identification by mass spectrometry (MS) is the most commonly used method to analyze complex protein mixtures. However, 2-DE is a slow and labor-intensive technique, which is not able to resolve all proteins of a proteome. To overcome these limitations gel-free approaches are developed based on high performance liquid chromatography (HPLC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The high resolution and excellent mass accuracy of FT-ICR MS provides a basis for simultaneous analysis of numerous compounds. In the present study, a small protein subfraction of an Escherichia coli cell lysate was prepared by size-exclusion chromatography and proteins were analyzed using C4 reversed phase (RP)-HPLC for pre-separation followed by C18 RP nanoHPLC/nanoESI FT-ICR MS for analysis of the peptide mixtures after tryptic digestion of the protein fractions. We identified 231 proteins and thus demonstrated that a combination of two RP separation steps - one on the protein and one on the peptide level - in combination with high-resolution FT-ICR MS has the potential to become a powerful method for global proteomics studies.  相似文献   

15.
The combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), in-gel enzymatic digestion of proteins separated by two-dimensional gel electrophoresis and searches of molecular weight in peptide-mass databases is a powerful and well established method for protein identification in proteomics analysis. For successful protein identification by MALDI-TOF mass spectrometry of peptide mixtures, critical parameters include highly specific enzymatic cleavage, high mass accuracy and sufficient numbers and sequence coverage of the peptides which can be analyzed. For in-gel digestion with trypsin, the method employed should be compatible both with enzymatic cleavage and subsequent MALDI-TOF MS analysis. We report here an improved method for preparation of peptides for MALDI-TOF MS mass fingerprinting by using volatile solubilizing agents during the in-gel digestion procedure. Our study clearly demonstrates that modification of the in-gel digestion protocols by addition of dimethyl formamide (DMF) or a mixture of DMF/N,N-dimethyl acetamide at various concentrations can significantly increase the recovery of peptides. These higher yields of peptides resulted in more effective protein identification.  相似文献   

16.
Because of their complexity, the separation of intact proteins from complex mixtures is an important step to comparative proteomics and the identification and characterization of the proteins by mass spectrometry (MS). In the study reported, we evaluated the use of nonporous-reversed-phase (np-RP)-HPLC for intact protein separation prior to MS analyses. The separation system was characterized and compared to 1D-SDS-PAGE electrophoresis in terms of resolution and sensitivity. We demonstrate that np-RP-HPLC protein separation is highly reproducible and provides intact protein fractions which can be directly analyzed by MALDI-TOF-MS for intact molecular weight determination. An in-well digestion protocol was developed, allowing for rapid protein identification by peptide mass fingerprinting (PMF) and resulted in comparable or improved peptide recovery compared with in-gel digestion. The np-RP sensitivity of detection by UV absorbance at 214 nm for intact proteins was at the low ng level and the sensitivity of peptide analysis by MALDI-TOF-MS was in the 10-50 fmol level. A membrane protein fraction was characterized to demonstrate application of this methodology. Among the identified proteins, multiple forms of vimentin were observed. Overall, we demonstrate that np-RP-HPLC followed by MALDI-TOF-MS allows for rapid, sensitive, and reproducible protein fractionation and very specific protein characterization by integration of PMF analysis with MS intact molecular weight information.  相似文献   

17.
A completely automated peptide mapping liquid chromatography/mass spectrometry (LC/MS) system for characterization of therapeutic proteins in which a common high-performance liquid chromatography (HPLC) autosampler is used for automated sample preparation, including protein denaturation, reduction, alkylation, and enzymatic digestion, is described. The digested protein samples are then automatically subjected to LC/MS analysis using the same HPLC system. The system was used for peptide mapping of monoclonal antibodies (mAbs), known as a challenging group of therapeutic proteins for achieving complete coverage and quantitative representation of all peptides. Detailed sample preparation protocols, using an Agilent HPLC system, are described for Lys-C digestion of mAbs with intact disulfide bonds and tryptic digestion of mAbs after reduction and alkylation. The automated procedure of Lys-C digestion of nonreduced antibody, followed by postdigestion disulfide reduction, produces both the nonreduced and reduced digests that facilitate disulfide linkage analysis. The automated peptide mapping LC/MS system has great utility in preparing and analyzing multiple samples for protein characterization, identification, and quantification of posttranslational modifications during process and formulation development as well as for protein identity and quality control.  相似文献   

18.
We have investigated the use of a variety of different techniques to identify as many proteins as possible in a yeast lysate, with the aim of investigating the overlap and complementarity of data from different approaches. A standard lysate was prepared from log phase yeast (Saccharomyces cerevisiae). This was then subjected to analysis via five different approaches aimed at identifying as many proteins as possible using an ion trap mass spectrometer. The total number of non-redundant protein identifications from each experiment was: 524 proteins by 2-D (SCX/C18) nanoflow liquid chromatography-liquid chromatography tandem mass spectrometry (nanoLC-LC MS/MS (MudPIT)); 381 proteins by nanoLC-MS/MS with gas phase fractionation by mass range selection; 390 proteins by nanoLC-MS/MS with gas phase fractionation by ion abundance selection; 898 proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation of proteins, in-gel digestion, and nanoLC-MS/MS of gel slices; and 422 proteins by isoelectric focusing of proteins, in-gel digestion and nanoLC-MS/MS of gel slices. The total number of non-redundant protein identifications in the five experiments was 1204. Combining only the two best experiments, the SDS-PAGE gel slices and the Mudpit, produces 1024 proteins identified, more than 85% of the total. Clearly, combining a Mudpit analysis with an SDS-PAGE gel slice experiment gives the greatest amount of protein identification information from a limited amount of sample.  相似文献   

19.
Protein identification by peptide mass mapping usually involves digestion of gel-separated proteins with trypsin, followed by mass measurement of the resulting peptides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Positive identification requires measurement of enough peptide masses to obtain a definitive match with sequence information recorded in protein or DNA sequence databases. However, competitive binding and ionization of residual surfactant introduced during polyacrylamide gel electrophoresis (PAGE) can inhibit solid-phase extraction and MS analysis of tryptic peptides. We have evaluated a novel, acid-labile surfactant (ALS) as an alternative to sodium dodecylsulfate (SDS) for two-dimensional (2-D) PAGE separation and MALDI-MS mapping of proteins. ALS was substituted for SDS at the same concentration in buffers and gels used for 2-D PAGE. Manual and automated procedures for spot cutting and in-gel digestion were used to process Coomassie stained proteins for MS analysis. Results indicate that substituting ALS for SDS during PAGE can significantly increase the number of peptides detected by MALDI-MS, especially for proteins of relatively low abundance. This effect is attributed to decomposition of ALS under acidic conditions during gel staining, destaining, peptide extraction and MS sample preparation. Automated excision and digestion procedures reduce contamination by keratin and other impurities, further enhancing MS identification of gel separated proteins.  相似文献   

20.
Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号