首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetics describes the heritable changes in gene function that occur independently to the DNA sequence. The molecular basis of epigenetic gene regulation is complex, but essentially involves modifications to the DNA itself or the proteins with which DNA associates. The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC). DNA methylation provides instruction to gene expression machinery as to where and when the gene should be expressed. The primary target sequence for DNA methylation in mammals is 5''-CpG-3'' dinucleotides (Figure 1). CpG dinucleotides are not uniformly distributed throughout the genome, but are concentrated in regions of repetitive genomic sequences and CpG "islands" commonly associated with gene promoters (Figure 1). DNA methylation patterns are established early in development, modulated during tissue specific differentiation and disrupted in many disease states including cancer. To understand the biological role of DNA methylation and its role in human disease, precise, efficient and reproducible methods are required to detect and quantify individual 5-MeCs.This protocol for bisulphite conversion is the "gold standard" for DNA methylation analysis and facilitates identification and quantification of DNA methylation at single nucleotide resolution. The chemistry of cytosine deamination by sodium bisulphite involves three steps (Figure 2). (1) Sulphonation: The addition of bisulphite to the 5-6 double bond of cytosine (2) Hydrolic Deamination: hydrolytic deamination of the resulting cytosine-bisulphite derivative to give a uracil-bisulphite derivative (3) Alkali Desulphonation: Removal of the sulphonate group by an alkali treatment, to give uracil. Bisulphite preferentially deaminates cytosine to uracil in single stranded DNA, whereas 5-MeC, is refractory to bisulphite-mediated deamination. Upon PCR amplification, uracil is amplified as thymine while 5-MeC residues remain as cytosines, allowing methylated CpGs to be distinguished from unmethylated CpGs by presence of a cytosine "C" versus thymine "T" residue during sequencing.DNA modification by bisulphite conversion is a well-established protocol that can be exploited for many methods of DNA methylation analysis. Since the detection of 5-MeC by bisulphite conversion was first demonstrated by Frommer et al.1 and Clark et al.2, methods based around bisulphite conversion of genomic DNA account for the majority of new data on DNA methylation. Different methods of post PCR analysis may be utilized, depending on the degree of specificity and resolution of methylation required. Cloning and sequencing is still the most readily available method that can give single nucleotide resolution for methylation across the DNA molecule.  相似文献   

2.
High sensitivity mapping of methylated cytosines.   总被引:79,自引:16,他引:63       下载免费PDF全文
An understanding of DNA methylation and its potential role in gene control during development, aging and cancer has been hampered by a lack of sensitive methods which can resolve exact methylation patterns from only small quantities of DNA. We have now developed a genomic sequencing technique which is capable of detecting every methylated cytosine on both strands of any target sequence, using DNA isolated from fewer than 100 cells. In this method, sodium bisulphite is used to convert cytosine residues to uracil residues in single-stranded DNA, under conditions whereby 5-methylcytosine remains non-reactive. The converted DNA is amplified with specific primers and sequenced. All the cytosine residues remaining in the sequence represent previously methylated cytosines in the genome. The work described has defined procedures that maximise the efficiency of denaturation, bisulphite conversion and amplification, to permit methylation mapping of single genes from small amounts of genomic DNA, readily available from germ cells and early developmental stages.  相似文献   

3.
4.
Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution.  相似文献   

5.
6.
To analyse the biological role of 5-methylation of cytosine residues in DNA requires precise and efficient methods for detecting individual 5-methylcytosines (5-MeCs) in genomic DNA. The methods developed over the past decade rely on either differential enzymatic or chemical cleavage of DNA, or more recently on differential sensitivity to chemical conversion of one base to another. The most commonly used methods for studying the methylation profile of DNA, including the bisulphite base-conversion method, are reviewed.  相似文献   

7.
重金属对水稻和小麦DNA甲基化水平的影响   总被引:25,自引:0,他引:25  
和对照相比,0.025(或0.05)-0.1mmol/L的Cu^2 (或0.05)-1.0mmol/L的Cd^2 或Hg^2 导致水稻(或小麦)叶DNA中的5-甲基胞嘧啶百分含量大幅度上升;当Cu^2 浓度>0.1mmol/L时,小麦和水稻叶DNA中5-甲基胞嘧啶的百分含量随Cu^2 浓度的增高略有下降,但仍高于对照。0.1-1.0mmol/L的Cu^2 ,Cd^2 和Hg^2 也导致小麦穗DNA为5-甲基胞嘧啶的百分含量随Cu^2 ,Cd^ 和Cd^2 能使小麦和水稻根系DNA中5-甲基胞嘧啶的百分含量显著高于对照,而0.1-1.0mmol/L的Hg^2 以及1.0mmol/L的Cu^2 和Cd^2 则造成小麦和水稻根系DNA中5-甲基胞嘧啶的百分含量显著低于对照。  相似文献   

8.
Identification and resolution of artifacts in bisulfite sequencing   总被引:19,自引:0,他引:19  
Bisulfite sequencing has become the most widely used application to detect 5-methylcytosine (5-MeC) in DNA, and provides a reliable way of detecting any methylated cytosine at single-molecule resolution in any sequence context. The process of bisulfite treatment exploits the different sensitivity of cytosine and 5-MeC to deamination by bisulfite under acidic conditions, in which cytosine undergoes conversion to uracil while 5-MeC remains unreactive. In this article, we address the more commonly encountered experimental artifacts associated with bisulfite sequencing, and provide methods for the detection and elimination of these artifacts. In particular, we focus on conditions that inhibit complete bisulfite-mediated conversion of cytosines in a target sequence, and demonstrate the necessity of complete protein removal from DNA samples prior to bisulfite treatment. We also include a brief summary of the experimental protocol for bisulfite treatment and tips for designing polymerase chain reaction (PCR) primers to amplify from bisulfite-treated DNA.  相似文献   

9.
The detection of 5'-methylcytosine by the bisulphite-mediated genomic sequencing method has considerably aided study of the role of methylation in areas such as X chromosome inactivation, genomic imprinting and cancer research. However on occasion difficulty has been experienced in obtaining complete conversion of cytosine to uracil in regions of the target DNA. We report here a simple improvement to the method involving addition of urea to the bisulphite reaction, a step which greatly improves the reaction efficiency, presumably by maintaining the target DNA in single stranded form, thereby allowing complete and reliable conversion.  相似文献   

10.

Background  

Establishment of chromosomal cytosine methylation and histone methylation patterns are critical epigenetic modifications required for heterochromatin formation in the mammalian genome. However, the nature of the primary signal(s) targeting DNA methylation at specific genomic regions is not clear. Notably, whether histone methylation and/or chromatin remodeling proteins play a role in the establishment of DNA methylation during gametogenesis is not known. The chromosomes of mouse neonatal spermatogonia display a unique pattern of 5-methyl cytosine staining whereby centromeric heterochromatin is hypo-methylated whereas chromatids are strongly methylated. Thus, in order to gain some insight into the relationship between global DNA and histone methylation in the germ line we have used neonatal spermatogonia as a model to determine whether these unique chromosomal DNA methylation patterns are also reflected by concomitant changes in histone methylation.  相似文献   

11.
Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known function in catalyzing methylation. In situations of extremely low levels of S-adenosyl methionine (SAM), DNMT-3A and -3B might demethylate C-5 methyl cytosine (5mC) via deamination to thymine, which is subsequently replaced by an unmodified cytosine through the base excision repair (BER) pathway. Alternatively, 5mC when converted to 5- hydroxymethylcytosine (5hmC) by TET enzymes, might be further modified to an unmodified cytosine by DNMT-3A and -3B under oxidized redox conditions, although exact pathways are yet to be elucidated. Interestingly, even direct conversion of 5mC to cytosine might be catalyzed by DNMTs. Here, we summarize the evidence on the DNA dehydroxymethylase and demethylase activity of DNMT-3A and -3B. Although physiological relevance needs to be demonstrated, the current indications on the 5mC- and 5hmC-modifying activities of de novo DNA C-5 methyltransferases shed a new light on these enzymes. Despite the extreme circumstances required for such unexpected reactions to occur, we here put forward that the chromatin microenvironment can be locally exposed to extreme conditions, and hypothesize that such waves of extremes allow enzymes to act in differential ways.  相似文献   

12.
Methylation analysis of individual cytosines in genomic DNA can be determined quantitatively by bisulphite treatment and PCR amplification of the target DNA sequence, followed by restriction enzyme digestion or sequencing. Methylated and unmethylated molecules, however, have different sequences after bisulphite conversion. For some sequences this can result in bias during the PCR amplification leading to an inaccurate estimate of methylation. PCR bias is sequence dependent and often strand-specific. This study presents a simple method for detection and measurement of PCR bias for any set of primers, and investigates parameters for overcoming PCR bias.  相似文献   

13.
Irier HA  Jin P 《DNA and cell biology》2012,31(Z1):S42-S48
Gene expression is modulated by epigenetic factors that come in varying forms, such as DNA methylation, histone modifications, microRNAs, and long noncoding RNAs. Recent studies reveal that these epigenetic marks are important regulatory factors in brain function. In particular, DNA methylation dynamics are found to be essential components of epigenetic regulation in the mammalian central nervous system. In this review, we provide an overview of the literature on DNA methylation in neurodegenerative diseases, with a special focus on methylation of 5-position of cytosine base (5mC) and hydroxymethylation of 5-position of cytosine base (5hmC) in the context of neurodegeneration associated with aging and Alzheimer's disease.  相似文献   

14.
《Epigenetics》2013,8(6):823-828
In mammalian genomes, the methylation of cytosine residues within CpG dinucleotides is crucial to normal development and cell differentiation. However, methylation of cytosines in the contexts of CpA, CpT, and CpC (non-CpG methylation) has been reported for decades, yet remains poorly understood. In recent years, whole genome bisulphite sequencing (WGBS) has confirmed significant levels of non-CpG methylation in specific tissues and cell types. Non-CpG methylation has several properties that distinguish it from CpG methylation. Here we review the literature describing non-CpG methylation in mammalian cells, describe the important characteristics that distinguish it from CpG methylation, and discuss its functional importance.  相似文献   

15.

Background

Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA.

Results

We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods.

Conclusions

The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.
  相似文献   

16.
In mammalian genomes, the methylation of cytosine residues within CpG dinucleotides is crucial to normal development and cell differentiation. However, methylation of cytosines in the contexts of CpA, CpT, and CpC (non-CpG methylation) has been reported for decades, yet remains poorly understood. In recent years, whole genome bisulphite sequencing (WGBS) has confirmed significant levels of non-CpG methylation in specific tissues and cell types. Non-CpG methylation has several properties that distinguish it from CpG methylation. Here we review the literature describing non-CpG methylation in mammalian cells, describe the important characteristics that distinguish it from CpG methylation, and discuss its functional importance.  相似文献   

17.
The cytosine C5 methyltransferase M.HaeIII recognises and methylates the central cytosine of its canonical site GGCC. Here we report that M.HaeIII can also, with lower efficiency, methylate cytosines located in a wide range of non-canonical sequences. Using bisulphite sequencing we mapped the methyl- cytosine residues in DNA methylated in vitro and in vivo by M.HaeIII. Methyl-cytosine residues were observed in multiple sequence contexts, most commonly, but not exclusively, at star sites (sites differing by a single base from the canonical sequence). The most frequently used star sites had changes at positions 1 and 4, but there is little or no methylation at star sites changed at position 2. The rate of methylation of non-canonical sites can be quite significant: a DNA substrate lacking a canonical site was methylated by M.HaeIII in vitro at a rate only an order of magnitude slower than an otherwise identical substrate containing the canonical site. In vivo methylation of non-canonical sites may therefore be significant and may have provided the starting point for the evolution of restriction–modification systems with novel sequence specificities.  相似文献   

18.
19.
DNA methylation, the conversion of cytosine to 5-methylcytosine, is an important epigenetic modification involved in gene regulation. DNA methylation is essential for normal development whereas abnormal methylation has been implicated in pathological conditions including cancer. To evaluate the extent and variation of genome-wide DNA methylation and its changes during cellular differentiation and tumorgenesis as well as the interplay with histone modifications, accurate and reproducible quantification of the genomic DNA methylation level is required. These measurements have so far been achieved only by sophisticated and costly techniques. Here we report the generation of an enzyme-linked immunosorbent assay (methDNA-ELISA) for the accurate quantification of global DNA methylation levels. The linear region of this methDNA-ELISA ranges from 1 to 10%, making it highly suitable for the typical ranges from 2 to 6% in mammalian genomes. This method requires 10 ng of isolated DNA per sample, thus permitting investigation with minimal amounts of DNA previously not applicable for global DNA methylation analysis, e.g., clinical biopsies or cells collected by microdissection.  相似文献   

20.

Background

We recently showed that enzymes of the TET family convert 5-mC to 5-hydroxymethylcytosine (5-hmC) in DNA. 5-hmC is present at high levels in embryonic stem cells and Purkinje neurons. The methylation status of cytosines is typically assessed by reaction with sodium bisulfite followed by PCR amplification. Reaction with sodium bisulfite promotes cytosine deamination, whereas 5-methylcytosine (5-mC) reacts poorly with bisulfite and is resistant to deamination. Since 5-hmC reacts with bisulfite to yield cytosine 5-methylenesulfonate (CMS), we asked how DNA containing 5-hmC behaves in bisulfite sequencing.

Methodology/Principal Findings

We used synthetic oligonucleotides with different distributions of cytosine as templates for generation of DNAs containing C, 5-mC and 5-hmC. The resulting DNAs were subjected in parallel to bisulfite treatment, followed by exposure to conditions promoting cytosine deamination. The extent of conversion of 5-hmC to CMS was estimated to be 99.7%. Sequencing of PCR products showed that neither 5-mC nor 5-hmC undergo C-to-T transitions after bisulfite treatment, confirming that these two modified cytosine species are indistinguishable by the bisulfite technique. DNA in which CMS constituted a large fraction of all bases (28/201) was much less efficiently amplified than DNA in which those bases were 5-mC or uracil (the latter produced by cytosine deamination). Using a series of primer extension experiments, we traced the inefficient amplification of CMS-containing DNA to stalling of Taq polymerase at sites of CMS modification, especially when two CMS bases were either adjacent to one another or separated by 1–2 nucleotides.

Conclusions

We have confirmed that the widely used bisulfite sequencing technique does not distinguish between 5-mC and 5-hmC. Moreover, we show that CMS, the product of bisulfite conversion of 5-hmC, tends to stall DNA polymerases during PCR, suggesting that densely hydroxymethylated regions of DNA may be underrepresented in quantitative methylation analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号