首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Identification of post-translational modifications (PTMs) is important to understanding the biological functions of proteins. MS/MS is a useful tool to identify PTMs. Most existing search tools are restricted to take only a few types of PTMs as input. Here we describe a new algorithm, called MOD(i) (pronounced "mod eye"), that rapidly searches for all known types of PTMs at once without limiting a multitude of modified sites in a peptide. MOD(i) introduces the notion of a tag chain, a combination structure made from multiple sequence tags, that effectively localizes modified regions within a spectrum and overcomes de novo sequencing errors common in tag-based approaches. MOD(i) showed its performance competence by identifying various types of PTMs in analysis of PTM-rich proteins such as glyceraldehyde-3-phosphate dehydrogenase and lens protein. We demonstrated that MOD(i) innovatively manages the computational complexity of identifying multiple PTMs in a peptide, which may exist in a greater variety than usually expected. In addition, it is suggested that MOD(i) has great potential to discover novel modifications.  相似文献   

2.
Osteopontin (OPN) is a highly modified protein that is found in many tissues and has been associated with a variety of physiological and pathological processes. Bone OPN is a potent inhibitor of hydroxyapatite crystal formation and stimulates bone resorption by osteoclasts; these activities, as well as others, are dependent upon phosphorylation of the protein. We have used mass spectrometry (MS) to perform a comprehensive analysis of the post-translational modification of OPN purified from rat bone. Matrix-assisted laser desorption time-of-flight (MALDI-TOF) MS showed masses of 37.6 and 36.8 kDa before and after enzymatic dephosphorylation, respectively, corresponding to a content of approximately 10.4 phosphate groups. Using proteolytic digestion and tandem MS, we localized 29 sites of phosphorylation: S10, S11, S46, S47, T50, S60, S62, S65, S146, T154, S160, S164, S167, S193, S196, S203, S220, S223, S232, S241, S245, S257, S262, S267, S278, S290, S295, S296, and S297. In addition, Y150 was shown to be sulfated and T107, T110, T116, and T121 are O-glycosylated. No glycan was detected at the potential N-glycosylation site. Other modifications, including deamidation, oxidation, and carbamylation, are also present. A 36-amino acid sequence from residues 67-102 could not be analyzed in detail, even after sialidase treatment, presumably because of the presence of a large number of acidic residues. In comparison to the previously characterized cow milk isoform, rat bone OPN is sulfated and has an additional site of glycosylation, many different sites of phosphorylation, and a lower overall phosphate content.  相似文献   

3.
Mapping protein post-translational modifications with mass spectrometry   总被引:1,自引:0,他引:1  
Witze ES  Old WM  Resing KA  Ahn NG 《Nature methods》2007,4(10):798-806
Post-translational modifications of proteins control many biological processes, and examining their diversity is critical for understanding mechanisms of cell regulation. Mass spectrometry is a fundamental tool for detecting and mapping covalent modifications and quantifying their changes. Modern approaches have made large-scale experiments possible, screening complex mixtures of proteins for alterations in chemical modifications. By profiling protein chemistries, biologists can gain deeper insight into biological control. The aim of this review is introduce biologists to current strategies in mass spectrometry-based proteomics that are used to characterize protein post-translational modifications, noting strengths and shortcomings of various approaches.  相似文献   

4.
The core histones are the primary protein component of chromatin, which is responsible for the packaging of eukaryotic DNA. The NH(2)-terminal tail domains of the core histones are the sites of numerous post-translational modifications that have been shown to play an important role in the regulation of chromatin structure. In this study, we discuss the recent application of modern analytical techniques to the study of histone modifications. Through the use of mass spectrometry, a large number of new sites of histone modification have been identified, many of which reside outside of the NH(2)-terminal tail domains. In addition, techniques have been developed that allow mass spectrometry to be effective for the quantitation of histone post-translational modifications. Hence, the use of mass spectrometry promises to dramatically alter our view of histone post-translational modifications.  相似文献   

5.
6.
Introduction: Exploring post-translational modifications (PTMs) with the use of mass spectrometry (PTMomics) is a rapidly developing area, with methods for discovery/quantification being developed and advanced on a regular basis. PTMs are highly important for the regulation of protein function, interaction and activity, both in physiological and disease states. Changes in PTMs can either cause, or be the result of a disease, making them central for biomarker studies and studies of disease pathogenesis. Recently, it became possible to study multiple PTMs simultaneously from low amount of sample material, thereby increasing coverage of the PTMome obtainable from a single sample. Thus, quantitative PTMomics holds great potential to discover biomarkers from tissue and body fluids as well as elucidating disease mechanisms through characterization of signaling pathways.

Areas covered: Recent mass spectrometry-based methods for assessment of the PTMome, with focus on the most studied PTMs, are highlighted. Furthermore, both data dependent and data independent acquisition methods are evaluated. Finally, current challenges in the field are discussed.

Expert commentary: PTMomics holds great potential for clinical and biomedical research, especially with the generation of spectral libraries of peptides and PTMs from individual patients (permanent PTM maps) for use in personalized medicine.  相似文献   

7.
Electron capture dissociation (ECD) represents a significant advance in tandem mass spectrometry for the identification and characterization of post-translational modifications (PTMs) of polypeptides. In comparison with the conventional fragmentation techniques, such as collisionally induced dissociation and infrared multi-photon dissociation, ECD provides more extensive sequence fragments, while allowing the labile modifications to remain intact during backbone fragmentation. This unique attribute offers ECD as an attractive alternative for detection and localization of PTMs. The success and rapid adoption of ECD recently led to the culmination of The 1st International Uppsala Symposium on Electron Capture Dissociation of Biomolecules and Related Phenomena (October 19-22, 2003, Stockholm, Sweden). Herein, we present a general overview of the ECD technique as well as selected applications in characterization of post-translationally modified polypeptides.  相似文献   

8.
Histone proteins and their accompanying post-translational modifications have received much attention for their ability to affect chromatin structure and, hence, regulate gene expression. Recently, mass spectrometry has become an important complementary tool for the analysis of histone variants and modification sites, for determining the degree of occupancy of these modifications and for quantifying differential expression of these modifications from various samples. Additionally, as advancements in mass spectrometry technologies continue, the ability to read entire 'histone codes' across large regions of histone polypeptides or intact protein is possible. As chromatin biology demands, mass spectrometry has adapted and continues as a key technology for the analysis of gene regulation networks involving histone modifications.  相似文献   

9.
10.
Smad2 is a crucial component of transforming growth factor-β (TGFβ) signaling, and is involved in the regulation of cell proliferation, death and differentiation. Phosphorylation, ubiquitylation and acetylation of Smad2 have been found to regulate its activity. We used mass spectrometry to search for novel post-translational modifications (PTMs) of Smad2. Peptide mass fingerprinting (PMF) indicated that Smad2 can be acetylated, methylated, citrullinated, phosphorylated and palmitoylated. Sequencing of selected peptides validated methylation at Gly122 and hydroxylation at Trp18 of Smad2. We also observed a novel, so far unidentified modification at Tyr128 and Tyr151. Our observations open for further exploration of biological importance of the detected PTMs. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
12.
Post-translational modifications generate tremendous diversity, complexity and heterogeneity of gene products, and their determination is one of the main challenges in proteomics research. Recent developments in mass spectrometry based approaches for systematic, qualitative and quantitative determination of modified proteins promise to bring new insights on the dynamics and spatio-temporal control of protein activities by post-translational modifications, and reveal their roles in biological processes and pathogenic conditions. Combinations of affinity-based enrichment and extraction methods, multidimensional separation technologies and mass spectrometry are particularly attractive for systematic investigation of post-translationally modified proteins in proteomics.  相似文献   

13.
Protein and peptide mass analysis and amino acid sequencing by mass spectrometry is widely used for identification and annotation of post-translational modifications (PTMs) in proteins. Modification-specific mass increments, neutral losses or diagnostic fragment ions in peptide mass spectra provide direct evidence for the presence of post-translational modifications, such as phosphorylation, acetylation, methylation or glycosylation. However, the commonly used database search engines are not always practical for exhaustive searches for multiple modifications and concomitant missed proteolytic cleavage sites in large-scale proteomic datasets, since the search space is dramatically expanded. We present a formal definition of the problem of searching databases with tandem mass spectra of peptides that are partially (sub-stoichiometrically) modified. In addition, an improved search algorithm and peptide scoring scheme that includes modification specific ion information from MS/MS spectra was implemented and tested using the Virtual Expert Mass Spectrometrist (VEMS) software. A set of 2825 peptide MS/MS spectra were searched with 16 variable modifications and 6 missed cleavages. The scoring scheme returned a large set of post-translationally modified peptides including precise information on modification type and position. The scoring scheme was able to extract and distinguish the near-isobaric modifications of trimethylation and acetylation of lysine residues based on the presence and absence of diagnostic neutral losses and immonium ions. In addition, the VEMS software contains a range of new features for analysis of mass spectrometry data obtained in large-scale proteomic experiments. Windows binaries are available at http://www.yass.sdu.dk/.  相似文献   

14.
15.
The roles of post-translational modifications (PTMs) in the onset and progression of disease have been extensively studied for decades. More specifically, various PTMs have been the focus of research in Alzheimer's disease (AD). The two most discussed hallmarks of the disease, senile plaques and tau tangles, are the result of PTMs of the amyloidβ protein precursor (AβPP) and the microtubule stabilizing protein: tau. While these modifications have been characterized indirectly by biochemical-based methods, the primary shortcoming to this research can be linked to a lack of a thorough molecular-based means of qualitative and quantitative analysis of many of these modifications within transgenic animal, and human samples. In this review, we discuss the important proteins and their associated PTMs linked to AD and the ways in which mass spectrometry has and will be utilized to analyze them. We also comment on novel ways in which molecular-based mass spectrometry methods should be employed going forward to resolve the interconnections of the PTMs involvement in various stages of AD pathology (preclinical, mild cognitive impairment, advanced-stage AD).  相似文献   

16.
Methods for the simultaneous identification of interacting proteins and post-translational modifications of the focal adhesion adapter protein, paxillin, are presented. The strategy includes (1) lower-level, transient transfection of FLAG-GFP-Paxillin into HEK293 cells, (2) incubation of cells with phosphatase inhibitors prior to lysis, (3) purification of paxillin by anti-FLAG immunoprecipitation, (4) analysis of peptides generated from on-beads digestion using LTQ-FT or LTQ-ETD mass spectrometry, and (5) enrichment of phosphopeptide methyl esters with IMAC. Using the above strategies, we identify 29 phosphorylation sites (19 novel and 10 previously reported) and a novel glycosylation site on Ser 74. Furthermore, with this method, we simultaneously detect 10 co-purifying proteins which are present in focal adhesion complexes. Extension of these methods to other substrates should facilitate generation of global phosphorylation maps and protein-protein interactions for any protein of interest.  相似文献   

17.
蛋白质翻译后修饰在真核生物细胞内广泛存在,对蛋白质的结构和功能有着十分重要的影响.串联质谱技术的快速发展为翻译后修饰鉴定提供了高通量、高灵敏度和高分辨率的分析平台,但传统搜索引擎鉴定修饰的方法无法满足数据分析的需求,非限制翻译后修饰鉴定已成为目前蛋白质组修饰分析的重要手段之一.非限制翻译后修饰鉴定不需要在分析前指定修饰类型,可以直接从样品中找出大量已知或未知的修饰,对提高质谱图谱解析率以及揭示蛋白质的生物学功能具有十分重要的意义.本文首先介绍了非限制翻译后修饰鉴定的定义和发展历程,然后从序列匹配和谱图匹配两个方面详细综述了目前非限制翻译后修饰鉴定的主流算法,分析了非限制翻译后修饰鉴定的质量控制问题,最后结合非限制翻译后修饰鉴定的实际应用讨论了修饰鉴定算法的不足和发展方向.  相似文献   

18.
Post-translational histone modifications modulate chromatin-templated processes and therefore affect cellular proliferation, growth, and development. Although post-translational modifications on the core histones have been under intense investigation for several years, the modifications on variant histones are poorly understood. We used tandem mass spectrometry to identify covalent modifications on a histone H2A variant, macroH2A1.2. MacroH2A1.2 can be monoubiquitinated; however, the site of monoubiquitination has not been documented. In this study we used green fluorescent protein-tagged macroH2A1.2 to determine that Lys(115) is a site of ubiquitination. In addition, we found that this variant H2A is methylated on the epsilon amino group of lysine residues Lys(17), Lys(122), and Lys(238) and phosphorylated on Thr(128). Three of these modifications were also found to be present in the endogenous protein by mass spectrometric analysis. These results provide the first direct evidence that multiple post-translational modifications are imposed on macroH2A1.2, suggesting that, like canonical H2A, this variant H2A is subject to regulation by combinatorial use of covalent modifications.  相似文献   

19.
The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested in phase G1, S, and G2/M. For all core histones, the modifications in the G1 and S phases were largely identical but drastically different during mitosis. Modification changes between S and G2/M phases were quantified using the SILAC (stable isotope labeling by amino acids in cell culture) approach. Most striking was the mitotic phosphorylation on histone H3 and H4, whereas phosphorylation on H2A was constant during the cell cycle. A loss of acetylation was observed on all histones in G2/M-arrested cells. The pattern of cycle-dependent methylation was more complex: during G2/M, H3 Lys27 and Lys36 were decreased, whereas H4 Lys20 was increased. Our results show that mitosis was the period of the cell cycle during which many modifications exhibit dynamic changes.  相似文献   

20.
The availability of genome sequences, affordable mass spectrometers and high-resolution two-dimensional gels has made possible the identification of hundreds of proteins from many organisms by peptide mass fingerprinting. However, little attention has been paid to how information generated by these means can be utilised for detailed protein characterisation. Here we present an approach for the systematic characterisation of proteins using mass spectrometry and a software tool FindMod. This tool, available on the internet at http://www.expasy.ch/sprot/findmod.html , examines peptide mass fingerprinting data for mass differences between empirical and theoretical peptides. Where mass differences correspond to a post-translational modification, intelligent rules are applied to predict the amino acids in the peptide, if any, that might carry the modification. FindMod rules were constructed by examining 5153 incidences of post-translational modifications documented in the SWISS-PROT database, and for the 22 post-translational modifications currently considered (acetylation, amidation, biotinylation, C-mannosylation, deamidation, flavinylation, farnesylation, formylation, geranyl-geranylation, gamma-carboxyglutamic acids, hydroxylation, lipoylation, methylation, myristoylation, N -acyl diglyceride (tripalmitate), O-GlcNAc, palmitoylation, phosphorylation, pyridoxal phosphate, phospho-pantetheine, pyrrolidone carboxylic acid, sulphation) a total of 29 different rules were made. These consider which amino acids can carry a modification, whether the modification occurs on N-terminal, C-terminal or internal amino acids, and the type of organisms on which the modification can be found. We illustrate the utility of the approach with proteins from 2-D gels of Escherichia coli and sheep wool, where post-translational modifications predicted by FindMod were confirmed by MALDI post-source decay peptide fragmentation. As the approach is amenable to automation, it presents a potentially large-scale means of protein characterisation in proteome projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号