首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The correct topology and orientation of integral membrane proteins are essential for their proper function, yet such information has not been established for many membrane proteins. A simple technique called fluorescence protease protection (FPP) is presented, which permits the determination of membrane protein topology in living cells. This technique has numerous advantages over other methods for determining protein topology, in that it does not require the availability of multiple antibodies against various domains of the membrane protein, does not require large amounts of protein, and can be performed on living cells. The FPP method employs the spatially confined actions of proteases on the degradation of green fluorescent protein (GFP) tagged membrane proteins to determine their membrane topology and orientation. This simple approach is applicable to a wide variety of cell types, and can be used to determine membrane protein orientation in various subcellular organelles such as the mitochondria, Golgi, endoplasmic reticulum and components of the endosomal/recycling system. Membrane proteins, tagged on either the N-termini or C-termini with a GFP fusion, are expressed in a cell of interest, which is subject to selective permeabilization using the detergent digitonin. Digitonin has the ability to permeabilize the plasma membrane, while leaving intracellular organelles intact. GFP moieties exposed to the cytosol can be selectively degraded through the application of protease, whereas GFP moieties present in the lumen of organelles are protected from the protease and remain intact. The FPP assay is straightforward, and results can be obtained rapidly.  相似文献   

2.
Li HY  Zheng XM  Che MX  Hu HY 《PloS one》2012,7(4):e35628
Correct localization and transmembrane topology are crucial for the proteins residing and functioning in the endoplasmic reticulum (ER). We have developed a rapid and convenient assay, based on the redox-sensitive luciferase from Gaussia princeps (Gluc) and green fluorescence protein (GFP), to determine the localization or topology of ER proteins. Using the tandem Gluc-GFP reporter fused to different positions of a target protein, we successfully characterized the topologies of two ER transmembrane proteins Herp and HRD1 that are involved in the ER quality control system. This assay method may also be applicable to the proteins in secretory pathway, plasma membrane, and other compartments of cells.  相似文献   

3.
Understanding the cell biology of many proteins requires knowledge of their in vivo topological distribution. Here we describe a new fluorescence-based technique, fluorescence protease protection (FPP), for investigating the topology of proteins and for localizing protein subpopulations within the complex environment of the living cell. In the FPP assay, adapted from biochemical protease protection assays, GFP fusion proteins are used as noninvasive tools to obtain details of protein topology and localization within living cells in a rapid and straightforward manner. To demonstrate the broad applicability of FPP, we used the technique to define the topology of proteins localized to a wide range of organelles including the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, peroxisomes and autophagosomes. The success of the FPP assay in characterizing the topology of the tested proteins within their appropriate compartments suggests this technique has wide applicability in studying protein topology and localization within the cell.  相似文献   

4.
在基因组数据中,有20%~30%的产物被预测为跨膜蛋白,本文通过对膜蛋白拓扑结构预测方法进行分析,并评价其结果,为选择更合适的拓扑结构预测方法预测膜蛋白结构。通过对目前已有的拓扑结构预测方法的评价分析,可以为我们在实际工作中提供重要的参考。比如对一个未知拓扑结构的跨膜蛋白序列,我们可以先进行是否含有信号肽的预测,参考Polyphobius和SignalP两种方法,若两种方法预测结果不一致,综合上述对两种方法的评价,Polyphobius预测的综合能力较好,可取其预测的结果,一旦确定含有信号肽,则N端必然位于膜外侧。然后结合序列的长度,判断蛋白是单跨膜还是多重跨膜,即可参照上述评价结果,选择合适的拓扑结构预测方法进行预测。  相似文献   

5.
Ma B  Cui ML  Sun HJ  Takada K  Mori H  Kamada H  Ezura H 《Plant physiology》2006,141(2):587-597
Ethylene receptors are multispanning membrane proteins that negatively regulate ethylene responses via the formation of a signaling complex with downstream elements. To better understand their biochemical functions, we investigated the membrane topology and subcellular localization of CmERS1, a melon (Cucumis melo) ethylene receptor that has three putative transmembrane domains at the N terminus. Analyses using membrane fractionation and green fluorescent protein imaging approaches indicate that CmERS1 is predominantly associated with the endoplasmic reticulum (ER) membrane. Detergent treatments of melon microsomes showed that the receptor protein is integrally bound to the ER membrane. A protease protection assay and N-glycosylation analysis were used to determine membrane topology. The results indicate that CmERS1 spans the membrane three times, with its N terminus facing the luminal space and the large C-terminal portion lying on the cytosolic side of the ER membrane. This orientation provides a platform for interaction with the cytosolic signaling elements. The three N-terminal transmembrane segments were found to function as topogenic sequences to determine the final topology. High conservation of these topogenic sequences in all ethylene receptor homologs identified thus far suggests that these proteins may share the same membrane topology.  相似文献   

6.
A topology map of a membrane protein defines the location of transmembrane helices and the orientation of soluble domains relative to the membrane. In the absence of a high-resolution structure, a topology map is an essential guide for studying structure-function relationships. Although these maps can be predicted directly from amino acid sequence, the predictions are more accurate if combined with experimental data, which are usually obtained by fusing a reporter protein to the C-terminus of the protein. However, as reporter proteins are large, they cannot be used to report on the cytoplasmic/periplasmic location of the N-terminus of a protein. Here, we show that the bimolecular split-green fluorescent protein complementation system can overcome this limitation and can be used to determine the location of both the N- and C-termini of inner membrane proteins in Escherichia coli.  相似文献   

7.
To investigate the mechanism by which complex membrane proteins achieve their correct transmembrane orientation, we examined in detail the hepatitis B surface antigen for sequences which determine its membrane topology. The results demonstrated the presence of at least two kinds of topogenic elements: an N-terminal uncleaved signal sequence and an internal element containing both signal and stop-transfer function. Fusion of reporter groups to either end of the protein suggested that both termini are translocated across the membrane bilayer. We propose that this topology is generated by the conjoint action of both elements and involves a specifically oriented membrane insertion event mediated by the internal sequence. The functional properties of each element can be instructively compared with those of simpler membrane proteins and may provide insight into the generation of other complex protein topologies.  相似文献   

8.
The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C‐terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental.  相似文献   

9.
Several proteins encoded by the cellulose synthase-like (CSL) gene family are known to be processive glycan synthases involved in the synthesis of cell-wall polysaccharides. These include CSLA proteins, which synthesize β-(1→4)-linked mannans found in the walls of many plant species, and CSLC proteins, which are thought to synthesize the β-(1→4)-linked glucan backbone of xyloglucan, an abundant polysaccharide in the primary walls of many plants. CSLA and CSLC proteins are predicted to have multiple membrane spans, and their products (mannan and xyloglucan) accumulate in the Golgi lumen. Knowing where these proteins are located in the cell and how they are orientated in the membrane is important for understanding many aspects of mannan and xyloglucan biosynthesis. In this study, we investigate the subcellular localization and membrane protein topology of CSLA9 and CSLC4, the members of these two families that are most highly expressed in Arabidopsis. CSLA9 and CSLC4 are found predominantly in Golgi membranes, based on co-localization with the known ER/Golgi marker ERD2-YFP. The topology of epitope-tagged proteins was examined using protease protection experiments. Experiments were designed to determine the positions of both the protein termini and the active loop of the CSL proteins investigated. The topology of CSLA9 is characterized by an odd number of transmembrane domains (probably five) and an active site that faces the Golgi lumen. In contrast, CSLC4 has an even number of transmembrane domains (probably six) and an active site that faces the cytosol. The implications of these topologies on various aspects of hemicellulose biosynthesis are discussed.  相似文献   

10.
A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membrane-spanning topology of a model TA protein, cytochrome b5 (b5). Selective depletion from membranes of components involved in cotranslational protein translocation had no effect on either the efficiency or topology of b5 insertion. Indeed, the kinetics of transmembrane insertion into protein-free phospholipid vesicles was the same as for native ER microsomes. Remarkably, loading of either liposomes or microsomes with cholesterol to levels found in other membranes of the secretory pathway sharply and reversibly inhibited b5 transmembrane insertion. These results identify the minimal requirements for transmembrane topogenesis of a TA protein and suggest that selectivity among various intracellular compartments can be imparted by differences in their lipid composition.  相似文献   

11.
为了研究膜蛋白的跨膜结构,进行拓扑学分析是十分重要的.有许多分析膜蛋白拓扑结构的方法,本文采用烟草蚀斑病毒(TEV)酶特异性切割测试蛋白中跨膜片段的前段或后端所插入的tev识别序列EXXYXQ(S/G),如果TEV酶能够切割,表明该序列位于目标蛋白的细胞 质外.将Tev识别序列ENLYFQG 分别插入到拟南芥整合膜蛋白的的跨膜区域,然后转化进入酿酒酵母中. 消解酶(zymolyase)酶破除酵母的细胞壁后,TEV酶消化球状体,最后通过Western免疫印迹法来分析结果.有关该方法的注意事项在结果中进行了讨论.  相似文献   

12.
Bernsel A  Viklund H  Elofsson A 《Proteins》2008,71(3):1387-1399
Compared with globular proteins, transmembrane proteins are surrounded by a more intricate environment and, consequently, amino acid composition varies between the different compartments. Existing algorithms for homology detection are generally developed with globular proteins in mind and may not be optimal to detect distant homology between transmembrane proteins. Here, we introduce a new profile-profile based alignment method for remote homology detection of transmembrane proteins in a hidden Markov model framework that takes advantage of the sequence constraints placed by the hydrophobic interior of the membrane. We expect that, for distant membrane protein homologs, even if the sequences have diverged too far to be recognized, the hydrophobicity pattern and the transmembrane topology are better conserved. By using this information in parallel with sequence information, we show that both sensitivity and specificity can be substantially improved for remote homology detection in two independent test sets. In addition, we show that alignment quality can be improved for the most distant homologs in a public dataset of membrane protein structures. Applying the method to the Pfam domain database, we are able to suggest new putative evolutionary relationships for a few relatively uncharacterized protein domain families, of which several are confirmed by other methods. The method is called Searcher for Homology Relationships of Integral Membrane Proteins (SHRIMP) and is available for download at http://www.sbc.su.se/shrimp/.  相似文献   

13.
Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.  相似文献   

14.
In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 ?. The transmembrane helix was found to have an average immersion depth of 5.4 ?, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.  相似文献   

15.
The NADPH oxidase Nox4 is a multi-pass membrane protein responsible for the generation of reactive oxygen species that are implicated in cellular signaling but may also cause pathological situations when dysregulated. Although topological organization of integral membrane protein dictates its function, only limited experimental data describing Nox4's topology are available.To provide deeper insight on Nox4 structural organization, we developed a novel method to determinate membrane protein topology in their cellular environment, named Topological Determination by Ubiquitin Fusion Assay (ToDUFA). It is based on the proteolytic capacity of the deubiquitinase enzymes to process ubiquitin fusion proteins. This straightforward method, validated on two well-known protein's topologies (IL1RI and Nox2), allowed us to discriminate rapidly the topological orientation of protein's domains facing either the nucleocytosolic or the exterior/luminal compartments. Using this method, we were able for the first time to determine experimentally the topology of Nox4 which consists of 6 transmembrane domains with its N- and C-terminus moieties facing the cytosol. While the first, third and fifth loops of Nox4 protein are extracellular; the second and fourth loops are located in the cytosolic side. This approach can be easily extended to characterize the topology of all others members of the NADPH oxidase family or any multi-pass membrane proteins.Considering the importance of protein topology knowledge in cell biology research and pharmacological development, we believe that this novel method will represent a widely useful technique to easily uncover complex membrane protein's topology.  相似文献   

16.
Hybrid genes were constructed to express bifunctional hybrid proteins in which staphyloccal nuclease A with or without an amino-terminai OmpA signal sequence was fused with TEM β-lactamase (at the carboxyl terminal side) using the signal peptide of the major outer membrane lipoprotein of Escherichia coli as an internal linker. The hybrid proteins were found to be inserted in the membrane. Orientation of the hybrid protein with the OmpA signal peptide showed that the nuclease was translocated into the periplasm and the β-lactamase remained in the cytoplasm. This indicates that the cleavable OmpA signal peptide served as a secretory signal for nuclease and the internal lipoprotein signal served as the transmembrane anchor, in the absence of the OmpA signal sequence the topology of the hybrid protein was reversed indicating that the internal lipoprotein signal peptide initially served as the signal peptide for the secretion of the carboxy terminal β-lactamase domain across the membrane and subsequently as a membrane anchoring signal. The role of charged amino acids in the translocation and transmembrane orientation of membrane proteins was also analysed by introducing charged amino acids to either or both sides of the internal lipoprotein signal sequence in the bifunctional hybrid proteins in the absence of the amino-terminal signal sequence. Introduction of two lysine residues at the carboxy-terminal side of the internal signal sequence reversed the topology of the transmembrane protein by translocating the aminoterminal nuclease domain across the membrane, leaving the carboxyl terminal β-actamase domain in the cytoplasm. When three more lysine residues were added to the amino-terminal side of the internal signal sequence of the same construct the membrane topology flipped back to the original orientation. A similar reversion of the topology could be obtained by introducing negatively charged residues at the amino-terminal side of the internal signal sequence. Present results demonstrate for the first time that a bifunctional transmembrane protein can be engineered to assume either of the two opposite orientations and that charge balance around the transmembrane domain is a major factor in controlling the topology of a transmembrane protein.  相似文献   

17.
MOTIVATION: Many important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion are mediated by membrane proteins. Unfortunately, as these proteins are not water soluble, it is extremely hard to experimentally determine their structure. Therefore, improved methods for predicting the structure of these proteins are vital in biological research. In order to improve transmembrane topology prediction, we evaluate the combined use of both integrated signal peptide prediction and evolutionary information in a single algorithm. RESULTS: A new method (MEMSAT3) for predicting transmembrane protein topology from sequence profiles is described and benchmarked with full cross-validation on a standard data set of 184 transmembrane proteins. The method is found to predict both the correct topology and the locations of transmembrane segments for 80% of the test set. This compares with accuracies of 62-72% for other popular methods on the same benchmark. By using a second neural network specifically to discriminate transmembrane from globular proteins, a very low overall false positive rate (0.5%) can also be achieved in detecting transmembrane proteins. AVAILABILITY: An implementation of the described method is available both as a web server (http://www.psipred.net) and as downloadable source code from http://bioinf.cs.ucl.ac.uk/memsat. Both the server and source code files are free to non-commercial users. Benchmark and training data are also available from http://bioinf.cs.ucl.ac.uk/memsat.  相似文献   

18.
Transmembrane proteins affect vital cellular functions and pathogenesis, and are a focus of drug design. It is difficult to obtain diffraction quality crystals to study transmembrane protein structure. Computational tools for transmembrane protein topology prediction fill in the gap between the abundance of transmembrane proteins and the scarcity of known membrane protein structures. Their prediction accuracy is still inadequate: TMHMM, the current state-of-the-art method, has less than 52% accuracy in topology prediction on one set of transmembrane proteins of known topology. Based on the observation that there are functional domains that occur preferentially internal or external to the membrane, we have extended the model of TMHMM to incorporate functional domains, using a probabilistic approach originally developed for computational gene finding. Our extension is better than TMHMM in predicting the topology of transmembrane proteins. As prediction of functional domain improves, our system's prediction accuracy will likely improve as well.  相似文献   

19.
The transmembrane enzymes disulfide bond forming enzyme B (DsbB) and vitamin K epoxide reductase (VKOR) are central to oxidative protein folding in the periplasm of prokaryotes. Catalyzed formation of structural disulfide bonds in proteins also occurs in the cytoplasm of some hyperthermophilic prokaryotes through currently, poorly defined mechanisms. We aimed to determine whether DsbB and VKOR can be inverted in the membrane with retention of activity. By rational design of inversion of membrane topology, we engineered DsbB mutants that catalyze disulfide bond formation in the cytoplasm of Escherichia coli. This represents the first engineered inversion of a transmembrane protein with demonstrated conservation of activity and substrate specificity. This successful designed engineering led us to identify two naturally occurring and oppositely oriented VKOR homologues from the hyperthermophile Aeropyrum pernix that promote oxidative protein folding in the periplasm or cytoplasm, respectively, and hence defines the probable route for disulfide bond formation in the cytoplasm of hyperthermophiles. Our findings demonstrate how knowledge on the determinants of membrane protein topology can be used to de novo engineer a metabolic pathway and to unravel an intriguingly simple evolutionary scenario where a new “adaptive” cellular process is constructed by means of membrane protein topology inversion.  相似文献   

20.
方便且精准地检测跨膜蛋白拓扑结构,尤其是跨膜片段的氨基(N-)和羧基(C-)端的朝向,有利于发现新的蛋白质与蛋白质之间的相互作用,并进一步揭示蛋白质重要的生物学功能.自组装荧光蛋白已被广泛用于观察蛋白质与蛋白质之间的相互作用、标记细胞内源蛋白质并实现mRNA定位的可视化.本文扩展了自组装荧光蛋白的应用,将自组装荧光蛋白mNeonGreen2与定点标记技术相结合,以确定跨膜蛋白的拓扑结构.通过该方法,第一次清楚地证明了EI24的N端和C端均朝向细胞质方向.此外,该方法可用于确定定位于其他细胞器且结构尚未解析的跨膜蛋白的拓扑结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号