首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu JS  Luo L 《Nature protocols》2006,1(4):2110-2115
This protocol describes a basic method for dissection and immunofluorescence staining of the Drosophila brain at various developmental stages. The Drosophila brain has become increasingly useful for studies of neuronal wiring and morphogenesis in combination with techniques such as the 'mosaic analysis with a repressible cell marker' (MARCM) system, where single neurons can be followed in live and fixed tissues for high-resolution analysis of wild-type or genetically manipulated cells. Such high-resolution anatomical study of the brain is also important in characterizing the organization of neural circuits using genetic tools such as GAL4 enhancer trap lines, as Drosophila has been intensively used for studying the neural basis of behavior. Advantages of fluorescence immunostaining include compatibility with multicolor labeling and confocal or multiphoton imaging. This brain dissection and immunofluorescence staining protocol requires approximately 2 to 6 d to complete.  相似文献   

2.
MADM (Mosaic Analysis with Double Markers) technology offers a genetic approach in mice to visualize and concomitantly manipulate genetically defined cells at clonal level and single cell resolution. MADM employs Cre recombinase/loxP-dependent interchromosomal mitotic recombination to reconstitute two split marker genes--green GFP and red tdTomato -- and can label sparse clones of homozygous mutant cells in one color and wild-type cells in the other color in an otherwise unlabeled background. At present, major MADM applications include lineage tracing, single cell labeling, conditional knockouts in small populations of cells and induction of uniparental chromosome disomy to assess effects of genomic imprinting. MADM can be applied universally in the mouse with the sole limitation being the specificity of the promoter controlling Cre recombinase expression. Here I review recent developments and extensions of the MADM technique and give an overview of the major discoveries and progresses enabled by the implementation of the novel genetic MADM tools.  相似文献   

3.
Because of the structural and functional homology to the hair cells of the mammalian inner ear, the neurons that innervate the Drosophila external sense organs provide an excellent model system for the study of mechanosensation. This protocol describes a simple touch behavior in fruit flies which can be used to identify mutations that interfere with mechanosensation. The tactile stimulation of a macrochaete bristle on the thorax of flies elicits a grooming reflex from either the first or third leg. Mutations that interfere with mechanotransduction (such as NOMPC), or with other aspects of the reflex arc, can inhibit the grooming response. A traditional screen of adult behaviors would have missed mutants that have essential roles during development. Instead, this protocol combines the touch screen with mosaic analysis with a repressible cell marker (MARCM) to allow for only limited regions of homozygous mutant cells to be generated and marked by the expression of green fluorescent protein (GFP). By testing MARCM clones for abnormal behavioral responses, it is possible to screen a collection of lethal p-element mutations to search for new genes involved in mechanosensation that would have been missed by more traditional methods.  相似文献   

4.
Brain development in Drosophila is characterized by two neurogenic periods, one during embryogenesis and a second during larval life. Although much is known about embryonic neurogenesis, little is known about the genetic control of postembryonic brain development. Here we use mosaic analysis with a repressible cell marker (MARCM) to study the role of the brain tumor (brat) gene in neural proliferation control and tumour suppression in postembryonic brain development of Drosophila. Our findings indicate that overproliferation in brat mutants is due to loss of proliferation control in the larval central brain and not in the optic lobe. Clonal analysis indicates that the brat mutation affects cell proliferation in a cell-autonomous manner and cell cycle marker expression shows that cells of brat mutant clones show uncontrolled proliferation, which persists into adulthood. Analysis of the expression of molecular markers, which characterize cell types in wild-type neural lineages, indicates that brat mutant clones comprise an excessive number of cells, which have molecular features of undifferentiated progenitor cells that lack nuclear Prospero (Pros). pros mutant clones phenocopy brat mutant clones in the larval central brain, and targeted expression of wild-type pros in brat mutant clones promotes cell cycle exit and differentiation of brat mutant cells, thereby abrogating brain tumour formation. Taken together, our results provide evidence that the tumour suppressor brat negatively regulates cell proliferation during larval central brain development of Drosophila, and suggest that Prospero acts as a key downstream effector of brat in cell fate specification and proliferation control.  相似文献   

5.
Baer MM  Bilstein A  Leptin M 《Genetics》2007,176(4):2279-2291
The initial establishment of the tracheal network in the Drosophila embryo is beginning to be understood in great detail, both in its genetic control cascades and in its cell biological events. By contrast, the vast expansion of the system during larval growth, with its extensive ramification of preexisting tracheal branches, has been analyzed less well. The mutant phenotypes of many genes involved in this process are probably not easy to reveal, as these genes may be required for other functions at earlier developmental stages. We therefore conducted a screen for defects in individual clonal homozygous mutant cells in the tracheal network of heterozygous larvae using the mosaic analysis with a repressible cell marker (MARCM) system to generate marked, recombinant mitotic clones. We describe the identification of a set of mutants with distinct phenotypic effects. In particular we found a range of defects in terminal cells, including failure in lumen formation and reduced or extensive branching. Other mutations affect cell growth, cell shape, and cell migration.  相似文献   

6.
Mosaics have been used in Drosophila to study development and to generate mutant structures when a mutant allele is homozygous lethal. New approaches of directed somatic recombination based on FRT/FLP methods, have increased mosaicism rates but likewise multiple clones in the same individual appeared more frequently. Production of single clones could be essential for developmental studies; however, for cell-autonomous gene function studies only the presence of homozygous cells for the target recessive allele is relevant. Herein, we report the number and extension of antennal mosaics generated by the MARCM system at different ages. This information is directed to obtain the appropriated mosaic type for the intended application. By applying heat shock at 10 different developmental stages from 0-12 h to 6-7 days after egg laying, more than 50% of mosaics were obtained from 5,028 adults. Single recombinant clones appeared mainly at early stages while massive recombinant areas were observed with late treatments.  相似文献   

7.
R S Stowers  T L Schwarz 《Genetics》1999,152(4):1631-1639
The genetic analysis of a gene at a late developmental stage can be impeded if the gene is required at an earlier developmental stage. The construction of mosaic animals, particularly in Drosophila, has been a means to overcome this obstacle. However, the phenotypic analysis of mitotic clones is often complicated because standard methods for generating mitotic clones render mosaic tissues that are a composite of both mutant and phenotypically normal cells. We describe here a genetic method (called EGUF/hid) that uses both the GAL4/UAS and FLP/FRT systems to overcome this limitation for the Drosophila eye by producing genetically mosaic flies that are otherwise heterozygous but in which the eye is composed exclusively of cells homozygous for one of the five major chromosome arms. These eyes are nearly wild type in size, morphology, and physiology. Applications of this genetic method include phenotypic analysis of existing mutations and F(1) genetic screens to identify as yet unknown genes involved in the biology of the fly eye. We illustrate the utility of the method by applying it to lethal mutations in the synaptic transmission genes synaptotagmin and syntaxin.  相似文献   

8.
A genetic screen of transgenic mouse strains, carrying multiple copies of an MPSV neo retroviral vector, has led to the identification of a recessive embryonic lethal mutation, termed 413.d. This mutation is associated with a single proviral insertion and when homozygous, results in the failure of the early postimplantation embryo at the gastrulation stage of development. Embryonic stem cell lines (ES cells) were derived from 413.d intercross embryos. Genotyping, with respect to the 413.d integration site, identified wild-type, heterozygous and homozygous ES cell lines. The differentiation abilities and developmental potential of the ES cell lines were assessed using a number of in vitro and in vivo assays. Results indicate that the ES cell lines, regardless of genotype, are pluripotent and can give rise to tissue and cell types derived from all three germ layers. Furthermore, analysis of midgestation conceptuses (10.5 p.c.) and adult chimeras generated by injecting mutant ES cells into host blastocysts, provides strong evidence that the mutant cells can contribute to all extraembryonic tissues and somatic tissues, as well as to functional germ cells. These results indicate that the homozygous mutant cells can be effectively 'rescued' by the presence of wild-type cells in a carrier embryo.  相似文献   

9.
Zhang SP  Xue L 《遗传》2012,34(7):819-828
对动物体内单个细胞的谱系进行分析有助于追踪其在发育过程中的作用,但是体内各种组织都是由很多形态、结构、功能各不相同的细胞构成的复杂系统,这种复杂性严重阻碍了对单个细胞的研究。嵌合克隆技术(Mosaic technique)和标记技术(Labeling technique)的出现为这一研究提供了强有力的手段。文章介绍了近几年来黑腹果蝇(Drosophila melanogaster)研究中常用的7种嵌合克隆标记方法,包括FRT介导的有丝分裂重组(FRT-mediated mitotic recombination)、MARCM(Mosaic analysis with a repressible cell marker)、TSG(Twin spotgenerator)、Twin-spot MARCM、Q-MARCM(Q system-based MARCM)、Coupled MARCM和G-TRACE(Gal4technique for real-time and clonal expression)技术,详述了这些技术的原理及应用,并对不同技术进行了对比。运用这些技术研究者可以从单细胞水平进行遗传学标记和操作,特别是在神经系统等复杂系统中追踪单个细胞的发育过程。果蝇中的这些技术也将为其他模式生物追踪细胞谱系提供参考。  相似文献   

10.
The analysis of genetically mosaic worms, in which some cells carry a wild-type gene and others are homozygous mutant, can reveal where in the animal a gene acts to prevent the appearance of a mutant phenotype. In this primer article, we describe how Caenorhabditis elegans genetic mosaics are generated, identified and analyzed, and we discuss examples in which the analysis of mosaic worms has provided important information about the development of this organism.  相似文献   

11.
c-Src-null mutants have not provided a full understanding of the cellular functions of c-Src, reflecting the functional redundancy among Src family members. c-Src is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and Cdk5 at Ser75 in the unique amino terminal c-Src-specific domain. The specific roles of c-Src may be assessed by establishing mouse embryonic stem (ES) cells homozygous for a point mutation at Ser75. Mammalian homozygous cultured cells with a point mutation, however, have not yet been produced by gene targeting. Here we show an efficient procedure for producing ES cell clones bearing a homozygous Ser75 to Asp mutation in the c-src gene. This procedure was developed by combining two previously reported strategies: our procedure for introducing a point mutation into one allele with no exogenous sequence, and the high-geneticin (G418) selection procedure for introducing a mutation into both alleles. The mutant clones expressed the same levels of c-Src protein and autophosphorylation activity as wild-type cells, but the mutant c-Src was not phosphorylated on Ser75 during mitosis. This procedure is feasible for generating cells homozygous for a subtle mutation in most genes, and is expected to be applicable to other somatic cell lines.  相似文献   

12.
13.
研究BPOZ基因缺失对细胞生长和分化的影响.以高浓度的G418筛选BPOZ基因杂合缺失型ES细胞,PCR鉴定抗高浓度G418细胞克隆基因型;半定量RTPCR分析3种基因型ES细胞BPOZ基因的表达情况,分析3种基因型ES细胞Oct34基因的表达以明确ES细胞分化状态.利用3种基因型ES细胞进行细胞生长曲线和3H胸嘧啶核苷参入实验比较其生长速度和增殖能力.以裸鼠荷瘤实验和类胚体形成实验比较BPOZ基因纯合缺失型ES细胞与野生型ES细胞生长分化能力.结果表明,筛选获得两个BPOZ基因剔除的纯合ES细胞克隆;筛选得到的纯合ES细胞中BPOZ基因表达完全缺失,细胞处未分化状态.与野生型ES细胞相比,BPOZ基因纯合缺失型ES细胞生长受抑,增殖能力减弱.BPOZ基因纯合缺失型ES细胞可分化形成类胚体和具备来自3个不同胚层的细胞和组织的畸胎瘤.BPOZ基因剔除使ES细胞生长受抑,对ES细胞分化发育没有明显影响.  相似文献   

14.
常规基因剔除小鼠的获得主要是利用ES细胞的全能性先获得嵌合体小鼠,再利用:ES细胞的生殖系传递能力,通过嵌合体与野生型小鼠的交配获得杂合子小鼠.而四倍体补偿技术则可绕过嵌合体小鼠阶段,直接获得基因修饰杂合子小鼠.利用电融合技术和Piezoelectric microinjecfion显微注射技术建立了四倍体补偿技术,小鼠四倍体胚胎的获得率(电融合率)为(93.01±l.37)%,经体外培养囊胚形成率为(82.49±2.08)%.通过显微注射方法将2种129品系小鼠来源的ES细胞(CJ7和SCR012)注射到四倍体囊胚腔中,获得了完全ES细胞来源的小鼠,ES鼠的获得率分别为2.7%和8.3%.经微卫星DNA检测,成体小鼠的10个被检测组织均为129小鼠来源的.同时,也利用基因修饰的ES细胞进行了研究,获得了2种基因修饰的完全ES细胞来源的杂合子小鼠,部分小鼠具有繁殖能力,经繁育已获得了纯合子,其中凝血因子Ⅷ基因敲除小鼠获得了预期的血友病小鼠表型.上述结果说明四倍体补偿技术可应用于基因修饰小鼠的制备.  相似文献   

15.
Mitotic recombination is an effective tool for generating mutant clones in somatic tissues. Because of difficulties associated with detecting and quantifying mutant clones in mice, this technique is limited to analysis of growth‐related phenotypes induced by loss function of tumor suppressor genes. Here, we used the polymorphic CD45.1/CD45.2 alleles on chromosome 1 as pan‐hematopoietic markers to track mosaic clones generated through mitotic recombination in developing T cells. We show that lineage‐specific mitotic recombination can be induced and reliably detected as CD45.1 or CD45.2 homozygous clones from the CD45.1/CD45.2 heterozygous background. We have applied this system in the analysis of a lethal mutation in the Dhx9 gene. Mosaic analysis revealed a stage‐specific role for Dhx9 during T‐cell maturation. Thus, the experimental system described in this study offers a practical means for mosaic analysis of germline mutations in the hematopoietic system. genesis 50:543–551, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
We describe a sensitive, internally controlled method for comparing the genetic adaptability and relative fitness of virus populations in constant or changing host environments. Certain monoclonal antibody-resistant mutants of vesicular stomatitis virus can compete equally during serial passages in mixtures with the parental wild-type clone from which they were derived. These genetically marked "surrogate wild-type" neutral mutants, when mixed with wild-type virus, allow reliable measurement of changes in virus fitness and of virus adaptation to different host environments. Quantitative fitness vector plots demonstrate graphically that even clones of an RNA virus are composed of complex variant populations (quasispecies). Variants of greater fitness (competitive replication ability) were selected within very few passages of virus clones in new host cells or animals. Even clones which were well adapted to BHK21 cells gained further fitness during repeated passages in BHK21 cells.  相似文献   

17.
This protocol describes a rapid, precise method for generating sets of embryonic stem (ES) cells or mouse embryonic fibroblasts (MEFs) harboring point mutations in the p53 tumor suppressor gene (officially known as Trp53). The strategy uses cells from the Trp53 (p53-null) 'platform' mouse, which allows site-specific integration of plasmid DNA into the Trp53 locus. Simple PCR protocols identify correctly targeted clones and immunoblots verify re-expression of the protein. We also present protocol modifications needed for efficient recovery of MEF clones expressing p53 constructs that retain wild-type function, including growth at low (3%) oxygen and transient downregulation of p53 regulators to forestall cell senescence of primary MEFs. A library of cell lines expressing various p53 mutants derived from the same population of primary fibroblasts or platform ES cells can be acquired and screened in less than 1 month.  相似文献   

18.
Cell shape is critical for cell function. However, despite the importance of cell morphology, little is known about how individual cells generate specific shapes. Drosophila tracheal terminal cells have become a powerful genetic model to identify and elucidate the roles of genes required for generating cellular morphologies. Terminal cells are a component of a branched tubular network, the tracheal system that functions to supply oxygen to internal tissues. Terminal cells are an excellent model for investigating questions of cell shape as they possess two distinct cellular architectures. First, terminal cells have an elaborate branched morphology, similar to complex neurons; second, terminal cell branches are formed as thin tubes and contain a membrane-bound intracellular lumen. Quantitative analysis of terminal cell branch number, branch organization and individual branch shape, can be used to provide information about the role of specific genetic mechanisms in the making of a branched cell. Analysis of tube formation in these cells can reveal conserved mechanisms of tubulogenesis common to other tubular networks, such as the vertebrate vasculature. Here we describe techniques that can be used to rapidly fix, image, and analyze both branching patterns and tube formation in terminal cells within Drosophila larvae. These techniques can be used to analyze terminal cells in wild-type and mutant animals, or genetic mosaics. Because of the high efficiency of this protocol, it is also well suited for genetic, RNAi-based, or drug screens in the Drosophila tracheal system.  相似文献   

19.
A portion of the macronucleus of wild-type cells of Paramecium tetraurelia was removed and was injected into cells homozygous for the ftA mutation. The ftA mutants make defective trichocysts and are unable to perform normal trichocyst exocytosis. After injection, approx. 30% of the surviving cells show a phenotype shift from mutant to wild-type. This shift is stable during subsequent vegetative growth until clonal death. If, however, the hybrid cell lines are brought to autogamy (which discards the existing macronucleus and forms a new one from sexual products derived from a micronucleus), then the lines revert to the ftA phenotype. Since micronuclei were not transplanted, the phenotypic reversion after autogamy is to be expected, and demonstrates that the transformation affects the macronucleus only. A second series of injections involved transfer of a portion of the macronucleus from cells homozygous for the trichocyst ptA mutation into ftA host cells. These two mutations are genetically complementary, so the injection should be genetically equivalent to forming a double heterozygote. Approx. 20% of the injection survivors shift to wild-type. This shift is also vegetatively stable unless autogamy occurs; after autogamy, reversion to the ftA phenotype is seen. These results show that a portion of a macronucleus can be successfully transplanted from one cell to another and that, in the host cytoplasmic environment, normal gene expression and replication of a transplanted macronucleus does occur. The technique of macronuclear transplantation is significant to studies of the macronuclear contribution to clonal aging, and to studies on genetic control over trichocyst development.  相似文献   

20.
Neurons undergo extensive morphogenesis during development. To systematically identify genes important for different aspects of neuronal morphogenesis, we performed a genetic screen using the MARCM system in the mushroom body (MB) neurons of the Drosophila brain. Mutations on the right arm of chromosome 2 (which contains approximately 20% of the Drosophila genome) were made homozygous in a small subset of uniquely labeled MB neurons. Independently mutagenized chromosomes (4600) were screened, yielding defects in neuroblast proliferation, cell size, membrane trafficking, and axon and dendrite morphogenesis. We report mutations that affect these different aspects of morphogenesis and phenotypically characterize a subset. We found that roadblock, which encodes a dynein light chain, exhibits reduced cell number in neuroblast clones, reduced dendritic complexity and defective axonal transport. These phenotypes are nearly identical to mutations in dynein heavy chain Dhc64 and in Lis1, the Drosophila homolog of human lissencephaly 1, reinforcing the role of the dynein complex in cell proliferation, dendritic morphogenesis and axonal transport. Phenotypic analysis of short stop/kakapo, which encodes a large cytoskeletal linker protein, reveals a novel function in regulating microtubule polarity in neurons. MB neurons mutant for flamingo, which encodes a seven transmembrane cadherin, extend processes beyond their wild-type dendritic territories. Overexpression of Flamingo results in axon retraction. Our results suggest that most genes involved in neuronal morphogenesis play multiple roles in different aspects of neural development, rather than performing a dedicated function limited to a specific process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号