首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native disulfide bonds in therapeutic proteins are crucial for tertiary structure and biological activity and are therefore considered unsuitable for chemical modification. We show that native disulfides in human interferon alpha-2b and in a fragment of an antibody to CD4(+) can be modified by site-specific bisalkylation of the two cysteine sulfur atoms to form a three-carbon PEGylated bridge. The yield of PEGylated protein is high, and tertiary structure and biological activity are retained.  相似文献   

2.
High-throughput in vitro refolding of proteins that contain disulfide bonds, for which soluble expression is particularly difficult, is severely impeded by the absence of effective methods for detecting their native forms. We demonstrate such a method, which combines mass spectrometry with mild reductions, requires no prior experimentation or knowledge of proteins' physicochemical characteristics, function or activity, and is amenable to automation. These are necessary criteria for structural genomics and proteomics applications.  相似文献   

3.
The covalent conjugation of a functionalized poly(ethylene glycol) (PEG) to multiple nucleophilic amine residues results in a heterogeneous mixture of PEG positional isomers. Their physicochemical, biological, and pharmaceutical properties vary with the site of conjugation of PEG. Yields are low because of inefficient conjugation chemistry and production costs high because of complex purification procedures. Our solution to these fundamental problems in PEGylating proteins has been to exploit the latent conjugation selectivity of the two sulfur atoms that are derived from the ubiquitous disulfide bonds of proteins. This approach to PEGylation involves two steps: (1) disulfide reduction to release the two cysteine thiols and (2) re-forming the disulfide by bis-alkylation via a three-carbon bridge to which PEG was covalently attached. During this process, irreversible denaturation of the protein did not occur. Mechanistically, the conjugation is conducted by a sequential, interactive bis-alkylation using alpha,beta-unsaturated beta'-monosulfone functionalized PEG reagents. The combination of (a) maintaining the protein's tertiary structure after disulfide reduction, (b) the mechanism for bis-thiol selectivity of the PEG reagent, and (c) the steric shielding of PEG ensure that only one PEG molecule is conjugated at each disulfide bond. PEG was site-specifically conjugated via a three-carbon bridge to 2 equiv of the tripeptide glutathione, the cyclic peptide hormone somatostatin, the tetrameric protein l-asparaginase, and to the disulfides in interferon alpha-2b (IFN). SDS-PAGE, mass spectral, and NMR analyses were used to confirm conjugation, thiol selectivity, and connectivity. The biological activity of the l-asparaginase did not change after the attachment of four PEG molecules. In the case of IFN, a small reduction in biological activity was seen with the single-bridged IFN (without PEG attached). A significantly larger reduction in biological activity was seen with the three-carbon disulfide single-bridged PEG-IFNs and with the double-bridged IFN (without PEG attached). The reduction of the PEG-IFN's in vitro biological activity was a consequence of the steric shielding caused by PEG, and it was comparable to that seen with all other forms of PEG-IFNs reported. However, when a three-carbon bridge was used to attach PEG, our PEG-IFN's biological activity was found to be independent of the length of the PEG. This property has not previously been described for PEG-IFNs. Our studies therefore suggest that peptides, proteins, enzymes, and antibody fragments can be site-specifically PEGylated across a native disulfide bond using three-carbon bridges without destroying their tertiary structure or abolishing their biological activity. The stoichiometric efficiency of this approach also enables recycling of any unreacted protein. It therefore offers the potential to make PEGylated biopharmaceuticals as cost-effective medicines for global use.  相似文献   

4.
Formation of disulfide bonds in proteins and peptides   总被引:2,自引:0,他引:2  
For many proteins and peptides, disulfide bridges are prerequisite for their proper biological function. Many commercialized proteins are crosslinked by disulfide bridges that increase their resistance to destructive effects of extreme environment used in industrial processes or protect protein-based therapeutics from rapid proteolytic degradation. Manufacturing of these products must take into account oxidative refolding--a formation of native disulfide bonds by specific pairs of cysteines located throughout a sequence of linear protein. This review describes basic and practical aspects of oxidative folding that should be considered while designing and optimizing manufacturing of proteins using chemical synthesis, semi-synthesis and a recombinant expression.  相似文献   

5.
Prion protein (PrP) is the major component of the partially protease-resistant aggregate that accumulates in mammals with transmissible spongiform encephalopathies. The two cysteines of the scrapie form, PrP(Sc), were found to be in their oxidized (i.e. disulfide) form (Turk, E., Teplow, D. B., Hood, L. E., and Prusiner, S. B. (1988) Eur. J. Biochem. 176, 21-30); however, uncertainty remains as to whether the disulfide bonds are intra- or intermolecular. It is demonstrated here that the monomers of PrP(Sc) are not linked by intermolecular disulfide bonds. Furthermore, evidence is provided that PrP(Sc) can induce the conversion of the oxidized, disulfide-intact form of the monomeric cellular prion protein to its protease-resistant form without the temporary breakage and subsequent re-formation of the disulfide bonds in cell-free reactions.  相似文献   

6.
The reduction of the disulfide bonds of globular proteins, for example, those of lysozyme or ribonuclease-A, results in an increase in the hydrodynamic volume of the polypeptide chain. This is reflected in an earlier elution of the reduced protein on gel filtration compared to that of the native disulfide-bonded form. The reduction of the four disulfide bonds of ribonuclease-A increased its retention time on reverse phase support, suggesting an increase in the apparent hydrophobicity of the protein molecule on reduction. Performic acid-oxidized ribonuclease-A eluted ahead of native disulfide-bonded ribonuclease on RP HPLC, suggesting a decrease in the hydrophobicity of the molecule. However, the hydrodynamic volume of performic acid-oxidized ribonuclease-A is similar to that of reduced protein as reflected in its gel filtration behavior. Thus, the increased retention of the reduced protein compared to that of native disulfide-bonded protein is not related to the increased hydrodynamic volume, and is a reflection of the stronger interaction of reduced protein with the reverse phase support. Reoxidation of the reduced ribonuclease-A regenerated the original chromatographic behavior of the protein on the reverse phase support. Similar results were also obtained with hen egg white lysozyme. The results of the present study are interpreted as indicating that the native disulfide bonds of a globular protein restrict the exposure of the hydrophobic amino acid residues of the polypeptide chain with a consequent lower retention on the reverse phase support compared to its reduced form.  相似文献   

7.
8.
Plasma protein S-sulfonate compounds (RS-SO-3) have previously been shown to form, presumably by sulfitolysis of disulfide bonds, as a result of exposure to sulfite. In the investigations reported here, we identify two proteins in rabbit plasma, namely albumin and plasma fibronectin, which contain reactive sites for S-sulfonate formation. Separation and identification of these proteins following in vitro and in vivo exposure to sulfite was accomplished primarily by column chromatographic and electrophoretic techniques. In addition, the structure of presumed S-sulfonate groups was confirmed by the identification of cysteinyl-S-sulfonate residues in protein hydrolysates generated by enzymatic digestion. The molar ratio of RS-SO-3 in both albumin and plasma fibronectin was less than one. Data from our experiments suggest that the mixed disulfide site of non- mercaptalbumin is the reactive site for S-sulfonate formation. The site(s) of formation within the plasma fibronectin molecule was not investigated. The possible physiological significance of disulfide sulfitolysis of albumin and plasma fibronectin is discussed.  相似文献   

9.
The formation of native disulfide bonds is an essential event in the folding and maturation of proteins entering the secretory pathway. For native disulfides to form efficiently an oxidative pathway is required for disulfide bond formation and a reductive pathway is required to ensure isomerization of non-native disulfide bonds. The oxidative pathway involves the oxidation of substrate proteins by PDI, which in turn is oxidized by endoplasmic reticulum oxidase (Ero1). Here we demonstrate that overexpression of Ero1 results in the acceleration of disulfide bond formation and correct protein folding. In contrast, lowering the levels of glutathione within the cell resulted in acceleration of disulfide bond formation but did not lead to correct protein folding. These results demonstrate that lowering the level of glutathione in the cell compromises the reductive pathway and prevents disulfide bond isomerization from occurring efficiently, highlighting the crucial role played by glutathione in native disulfide bond formation within the mammalian endoplasmic reticulum.  相似文献   

10.
A sensitive quantitative method has been developed to determine the number of disulfide bonds in peptides and proteins. The disulfide bonds of several peptides and proteins were cleaved quantitatively by excess sodium sulfite at pH 9.5 and room temperature. Guanidine thiocyanate (2 M) was added to the protein solutions in order to denature them and thereby make the disulfide bonds accessible. The reaction with sulfite leads to a thiosulfonate and a free sulfhydryl group; the concentration of the latter was determined by reaction with disodium 2-nitro-5-thiosulfobenzoate (NTSB) in the presence of excess sodium sulfite. The synthesis, purification, and characterization of NTSB are described. The assay is rapid, requiring 3-5 min for oligopeptides and 20 min for proteins, and is as sensitive and quantitative as the sulfhydryl group assay employing 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent). It can be used for the analysis of as little as 10(8) mol of disulfide bonds, with an error of +/- 3%.  相似文献   

11.
Barnacles produce a cement that is a proteinaceous underwater adhesive for their secure attachment to the substratum. The biochemical properties of the cement have not previously been elucidated, because the insolubility of the cement proteins hampers their purification and characterization. We developed a non-hydrolytic method to render soluble most of the cement components, thereby allowing the proteins to be analyzed. Megabalanus rosa cement could be almost completely rendered soluble by its reduction with 0.5 m dithiothreitol at 60 degrees C in a 7 m guanidine hydrochloride solution, the high concentration of dithiothreitol being indispensable to achieve this. The effectiveness of this reduction treatment was confirmed by the detachment of the barnacle from the substratum. Three proteins comprising up to 94% of the whole cement were identified as the major cement components. The cDNA clone of one of these major proteins was isolated, and the site-specific expression of the gene in the basal portion of the adult barnacle, where the cement glands are located, was demonstrated. A sequence analysis revealed this cement component to be a novel protein of 993 amino acid residues, including a signal peptide. This is the first report of the major component of the barnacle cement protein complex.  相似文献   

12.
Allosteric disulfide bonds   总被引:5,自引:0,他引:5  
Schmidt B  Ho L  Hogg PJ 《Biochemistry》2006,45(24):7429-7433
Disulfide bonds have been generally considered to be either structural or catalytic. Structural bonds stabilize a protein, while catalytic bonds mediate thiol-disulfide interchange reactions in substrate proteins. There is emerging evidence for a third type of disulfide bond that can control protein function by triggering a conformational change when it breaks and/or forms. These bonds can be thought of as allosteric disulfides. To better define the properties of allosteric disulfides, we have analyzed the geometry and dihedral strain of 6874 unique disulfide bonds in 2776 X-ray structures. A total of 20 types of disulfide bonds were identified in the dataset based on the sign of the five chi angles that make up the bond. The known allosteric disulfides were all contained in 1 of the 20 groups, the -RHStaple bonds. This bond group has a high mean potential energy and narrow energy distribution, which is consistent with a functional role. We suggest that the -RHStaple configuration is a hallmark of allosteric disulfides. About 1 in 15 of all structurally determined disulfides is a potential allosteric bond.  相似文献   

13.
A soluble epoxide hydrase which catalyzes the hydration of 9,10-epoxypalmitic acid has been partially purified from cell-free preparations from Bacillusmegaterium ATCC 14581. The hydrase can be cleanly separated from a soluble cytochrome P-450-dependent monooxygenase complex, previously demonstrated in this bacterium, that can catalyze the epoxidation of palmitoleic acid.  相似文献   

14.
C1-inhibitor is a member of the serpin family of proteinase inhibitors and is an important inhibitor of complement and contact system proteinases. The native protein has the characteristic serpin feature of being in a kinetically trapped metastable state rather than in the most stable state it could adopt. A consequence of this is that it readily forms loop-sheet dimers and polymers, by a mechanism believed to be the same as observed with other serpins. An unusual feature of C1-inhibitor is that it has a unique amino-terminal domain, of unknown function, held to the serpin domain by two disulfide bonds not found in other serpins. We report here that reduction of these bonds by DTT, causes a conformational change such that the reactive center loop inserts into beta-sheet A. This form of C1-inhibitor is less stable to heat and urea than the native protein, and is more susceptible to extensive degradation by trypsin. These data show that the disulfide bonds in C1-inhibitor are required for the protein to be stabilized in the metastable state with the reactive center loop expelled from beta-sheet A.  相似文献   

15.
A rapid and sensitive method for assignment of disulfide bonds using fast atom bombardment mass spectrometry is described for hen egg white lysozyme and bovine ribonuclease A. The protein is initially digested to a mixture of peptides using chemical and enzymatic methods under conditions which minimize disulfide bond reduction and exchange. The digested sample is analyzed directly by fast atom bombardment mass spectrometry before and after chemical reduction of cystine residues. An important feature of the method is that it is not necessary to completely resolve the peptides in the digest chromatographically prior to analysis. The disulfide-containing peptides are also characterized directly by prolonged exposure of the sample to the high energy xenon atom beam which results in the reduction of cystine residues. Intra- as well as interchain disulfide bond assignments are made on the basis of the mass difference between the molecular ions (MH+) of the oxidized and reduced peptides. Confirmation of the mass assignments may be obtained from the mass spectra of the digests after one cycle of manual Edman degradation. Although the quantity of protein required to unambiguously assign all of the disulfide linkages will depend on the ease with which the appropriate peptide fragments can be formed, results from these studies indicate that approximately 1 nmol of protein is usually sufficient.  相似文献   

16.
Since the first PEGylated product was approved by the Food and Drug Administration in 1990, PEGylation has been widely used as a post-production modification methodology for improving biomedical efficacy and physicochemical properties of therapeutic proteins. Applicability and safety of this technology have been proven by use of various PEGylated pharmaceuticals for many years. It is expected that PEGylation, as the most established technology for extension of drug residence in the body, will play an important role in the next generation therapeutics, such as peptides, protein nanobodies and scaffolds, which due to their diminished molecular size need half-life extension. This review focuses on several factors important in the production of PEGylated biopharmaceuticals enabling efficient preparation of highly purified PEG-protein conjugates that have to meet stringent regulatory criteria for their use in human therapy. Areas addressed are PEG properties, the specificity of PEGylation reactions, separation and large-scale purification, the availability and analysis of PEG reagents, analysis of PEG-protein conjugates, the consistency of products and processes and approaches used for rapid screening of pharmacokinetic properties of PEG-protein conjugates.  相似文献   

17.
Native chemical ligation (NCL) is an emerging chemoselective chemistry that forms an amide bond by trans-thioesterification followed by intramolecular nucleophilic rearrangement between thioester and cysteine. The reaction is simple, occurs in a mild aqueous solution, and gives near-quantitative yields of a desired product. Since the first report in 1994, most studies involving the use of NCL have focused on the total synthesis of proteins to address fundamental questions pertaining to many aspects of protein science, such as folding, mirror images, and site-specific labeling of proteins, but applications of the NCL reaction for other areas remain largely unexplored. Herein, we present a facile strategy for surface immobilization of poly(ethylene glycol) (PEG) utilizing the NCL reaction. Surface immobilization of PEG (i.e., PEGylation) plays a key role in preventing nonspecific protein adsorption on surfaces, which is crucial in a wide variety of medical devices. Using cysteine-PEG and thioester-containing phosphonic acid conjugates, we achieved efficient surface PEGylation on titanium surfaces. Ellipsometry, goniometry, and X-ray photoelectron spectroscopy (XPS) unambiguously confirmed the presence of PEGs, which provided nonfouling effects of surfaces. This study indicates that the NCL reaction will be a useful toolkit for surface bioconjugation and functionalization.  相似文献   

18.
A new method is described for locating disulfide bonds in proteins which cannot be cleaved between half-cystinyl residues by enzymic methods, as is often the case for tightly coiled proteins, or for proteins in which half-cystinyl residues are not separated by residues required for enzymic cleavage. Partial acid hydrolysis of a model protein, hen egg-white lysozyme, produces a mixture of disulfide-containing peptides from which the disulfide connections may be deduced. The usefulness of a combination of HPLC, fast atom bombardment mass spectrometry, and computer-assisted analysis to identify disulfide-containing peptides present in the partial acid hydrolysate of the model protein is demonstrated. Chromatographic fractions of the hydrolysate were analyzed by mass spectrometry before and after chemical reduction of the disulfide bonds to determine the molecular weights of disulfide-containing peptides. Computer-assisted analysis was then used to relate the molecular weights of these peptides to specific segments of the protein from which the disulfide connectivities could be determined. Partial acid hydrolysis of proteins, which is attractive because it proceeds relatively independent of the amino acid sequence and structure, and because disulfide interchange is unlikely to occur in dilute acid, has become practical because disulfide-containing peptides present in complex mixtures can be identified rapidly and definitively by this method.  相似文献   

19.
We have developed general methods for joining together, via cleavable disulfide bonds, either two unprotected polynucleotides or a polynucleotide and a peptide or protein. To join two oligonucleotides, each is first converted to an adduct in which cystamine is joined to the 5'-terminal phosphate of the oligonucleotide by a phosphoramidate bond. The adducts are mixed and reduced with dithiothreitol. The dithiothreitol is then removed by dialysis. Oxidation by atmospheric oxygen occurs to yield the required dimer. To join an oligonucleotide to a cysteine-containing peptide or protein, the 5'-cystamine oligomer is first converted to a 2'-pyridyldisulfide adduct and then reacted with an excess of the peptide or protein. If the peptide does not contain a free cysteine residue, it is first treated with iminothiolane to introduce one or more sulfhydryl groups. We have used these procedures to join a 16 mer deoxynucleotide probe and MDV-1 RNA, a substrate of Q beta RNA polymerase. This adduct hybridizes with a complementary target DNA. We have also joined a 16mer probe to peroxidase and MDV-1 RNA to human IgG. The probe-peroxidase adduct maintains enzymatic activity and the MDV-1 RNA-IgG adduct binds to a complementary anti-IgG.  相似文献   

20.
The rapid formation of native disulfide bonds in cellular proteins is necessary for the efficient use of cellular resources. This process is catalyzed in vitro by protein disulfide isomerase (PDI), with the PDI1 gene being essential for the viability of Saccharomyces cerevisiae. PDI is a member of the thioredoxin (Trx) family of proteins, which have the active-site motif CXXC. PDI contains two Trx domains as well as two domains unrelated to the Trx family. We find that the gene encoding Escherichia coli Trx is unable to complement PDI1 null mutants of S.cerevisiae. Yet, Trx can replace PDI if it is mutated to have a CXXC motif with a disulfide bond of high reduction potential and a thiol group of low pKa. Thus, an enzymic thiolate is both necessary and sufficient for the formation of native disulfide bonds in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号