首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the classical view of axon guidance, neurons send out axons which are endowed with guidance receptors enabling them to find their (distant) target areas by an interaction with their ligands expressed in specific spatio-temporal patterns along their pathways and in their target area. However, this view has recently been confounded by more detailed analyses of, for example, the expression patterns of EphAs and ephrinAs in the retinotectal projection. Here ephrinA 'ligands' are expressed not only in the target area but also on the projecting RGC axons, and EphA 'receptors' not only on retinal ganglion cell (RGC) axons but also in the target area itself. This review describes the on-going functional characterisation of the surprising co-expression of ephrinAs and EphAs on retinal ganglion cell (RGC) axons and other cell types. It also investigates the function of ephrinAs as receptors and describes their interaction with co-receptors involved in mediating this function.  相似文献   

2.
The idea has been put forward that molecules and mechanisms acting during development are re-used during regeneration in the adult, for example in response to traumatic injury in order to re-establish the functional integrity of neuronal circuits. Members of the Eph family of receptor tyrosine kinases and their 'ligands', the ephrins, play a prominent role during development of the retinocollicular projection in rodents, where EphA receptors and ephrin-As are expressed in gradients in both the retina and the superior colliculi (SC). We were interested in investigating whether EphA family members are also expressed or re-expressed in the adult after optic nerve lesion, since the presence of axon guidance information is an important prerequisite for a topographically appropriate re-connection by retinal ganglion cell (RGC) axons. This analysis was encouraged by results showing that RGC axons do not exert guidance preferences in response to membranes from adult unlesioned SC, but in response to membranes from the adult deafferented SC. We found a graded expression pattern of ephrin-As in the SC both before and after deafferentation, which was remarkably similar to those found during development. EphA receptor levels were reduced in the SC after deafferentation and the expression patterns of the EphB family were not changed. In particular, the presence of a graded ephrin-A expression in the deafferented SC suggests that - if robust regeneration of RGC axons can be achieved - topographic guidance information as a likely requirement for a functionally successful re-establishment of the retinocollicular projection is available.  相似文献   

3.
Successful axon pathfinding requires both correct patterning of tissues, which will later harbor axonal tracts, and precise localization of axon guidance cues along these tracts at the time of axon outgrowth. Retinal ganglion cell (RGC) axons grow towards the optic disc in the central retina, where they turn to exit the eye through the optic nerve. Normal patterning of the optic disc and stalk and the expression of guidance cues at this choice point are necessary for the exit of RGC axons out of the eye. Sonic hedgehog (Shh) has been implicated in both patterning of ocular tissue and direct guidance of RGC axons. Here, we examine the precise spatial and temporal requirement for Hedgehog (Hh) signaling for intraretinal axon pathfinding and show that Shh acts to pattern the optic stalk in zebrafish but does not guide RGC axons inside the eye directly. We further reveal an interaction between the Hh and chemokine pathways for axon guidance and show that cxcl12a functions downstream of Shh and depends on Shh for its expression at the optic disc. Together, our results support a model in which Shh acts in RGC axon pathfinding indirectly by regulating axon guidance cues at the optic disc through patterning of the optic stalk.  相似文献   

4.
During development, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. In Drosophila, the Slit protein regulates midline axon crossing through repulsion. To determine the role of Slit proteins in RGC axon guidance, we disrupted Slit1 and Slit2, two of three known mouse Slit genes. Mice defective in either gene alone exhibited few RGC axon guidance defects, but in double mutant mice a large additional chiasm developed anterior to the true chiasm, many retinal axons projected into the contralateral optic nerve, and some extended ectopically-dorsal and lateral to the chiasm. Our results indicate that Slit proteins repel retinal axons in vivo and cooperate to establish a corridor through which the axons are channeled, thereby helping define the site in the ventral diencephalon where the optic chiasm forms.  相似文献   

5.
Axons receive guidance information from extrinsic cues in their environment in order to reach their targets. In the frog Xenopus laevis, retinal ganglion cell (RGC) axons make three key guidance decisions en route through the brain. First, they cross to the contralateral side of the brain at the optic chiasm. Second, they turn caudally in the mid-diencephalon. Finally, they must recognize the optic tectum as their target. The matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) families are zinc (Zn)-dependent proteolytic enzymes. The latter functions in axon guidance, but a similar role has not yet been identified for the MMP family. Our previous work implicated metalloproteinases in the guidance decisions made by Xenopus RGC axons. To test specifically the importance of MMPs, we used two different in vivo exposed brain preparations in which RGC axons were exposed to an MMP-specific pharmacological inhibitor (SB-3CT), either as they reached the optic chiasm or as they extended through the diencephalon en route to the optic tectum. Interestingly, SB-3CT affected only two of the guidance decisions, with misrouting defects at the optic chiasm and tectum. Only at higher concentrations was RGC axon extension also impaired. These data implicate MMPs in the guidance of vertebrate axons, and suggest that different metalloproteinases function to regulate axon behaviour at distinct choice points: an MMP is important in guidance at the optic chiasm and the target, while either a different MMP or an ADAM is required for axons to make the turn in the mid-diencephalon.  相似文献   

6.
It is currently unclear whether retinal ganglion cell (RGC) axon regeneration depends on down-regulation of axon growth-inhibitory proteins, and to what extent outgrowth-promoting substrates contribute to RGC axon regeneration in reptiles. We performed an immunohistochemical study of the regulation of the axon growth-inhibiting extracellular matrix molecules tenascin-R and chondroitin sulphate proteoglycan (CSPG), the axon outgrowth-promoting extracellular matrix proteins fibronectin and laminin, and the axonal tenascin-R receptor protein F3/contactin during RGC axon regeneration in the lizard, Gallotia galloti. Tenascin-R and CSPG were expressed in an extracellular matrix-, oligodendrocyte/myelin- and neuron-associated pattern and up-regulated in the regenerating optic pathway. The expression pattern of tenascin-R was not indicative of a role in channeling or restriction of re-growing RGC axons. Up-regulation of fibronectin, laminin, and F3/contactin occurred in spatiotemporal patterns corresponding to tenascin-R expression. Moreover, we analyzed the influence of substrates containing tenascin-R, fibronectin, and laminin on outgrowth of regenerating lizard RGC axons. In vitro regeneration of RGC axons was not inhibited by tenascin-R, and further improved on mixed substrates containing tenascin-R together with fibronectin or laminin. These results indicate that RGC axon regeneration in Gallotia galloti does not require down-regulation of tenascin-R or CSPG. Presence of tenascin-R is insufficient to prevent RGC axon growth, and concomitant up-regulation of axon growth-promoting molecules like fibronectin and laminin may override the effects of neurite growth inhibitors on RGC axon regeneration. Up-regulation of contactin in RGCs suggests that tenascin-R may have an instructive function during axon regeneration in the lizard optic pathway.  相似文献   

7.
During development of the vertebrate visual system, retinal ganglion cell (RGC) axons follow a precise path toward their midbrain targets. Although much is known about the cues that direct RGC axons once they have left the optic disc, less is known about the guidance of axons at earlier stages, when RGCs first send out their axons to navigate within the developing retina. Using collagen gel coculture experiments, we find that the embryonic lens produces a powerful diffusible repulsive activity for RGC axons. We also find that this activity is localized to the lens epithelium and not the lens fiber layer, while the pigmented epithelium and vitreous humour are devoid of activity. The further observation that the lens also chemorepels primary sensory axons, but does not repel olfactory bulb axons, shows that this activity is specific for subsets of axons. Our experiments have excluded two candidate repellents for RGC axons (collapsin-1/sema III and chondroitin sulfate proteoglycans). These results implicate the lens in the earliest stages of RGC axon guidance. One function of the lens repellent may be to prevent aberrant targeting toward the lens, and it may also be involved in the directional guidance of RGC axons toward the optic disc.  相似文献   

8.
We have studied the fate of neurofilament proteins (NFPs) in mouse retinal ganglion cell (RGC) neurons from 1 to 180 d after synthesis and examined the proximal-to-distal distribution of the newly synthesized 70-, 140-, and 200-kD subunits along RGC axons relative to the distribution of neurofilaments. Improved methodology for intravitreal delivery of [3H]proline enabled us to quantitate changes in the accumulation and subsequent decline of radiolabeled NFP subunits at various postinjection intervals and, for the first time, to estimate the steady state levels of NFPs in different pools within axons. Two pools of newly synthesized triplet NFPs were distinguished based on their kinetics of disappearance from a 9-mm "axonal window" comprising the optic nerve and tract and their temporal-spatial distribution pattern along axons. The first pool disappeared exponentially between 17 and 45 d after injection with a half-life of 20 d. Its radiolabeled wavefront advanced along axons at 0.5-0.7 mm/d before reaching the distal end of the axonal window at 17 d, indicating that this loss represented the exit of neurofilament proteins composing the slowest phase of axoplasmic transport (SCa or group V) from axons. About 32% of the total pool of radiolabeled neurofilament proteins, however, remained in axons after 45 d and disappeared exponentially at a much slower rate (t 1/2 = 55 d). This second NFP pool assumed a nonuniform distribution along axons that was characterized proximally to distally by a 2.5-fold gradient of increasing radioactivity. This distribution pattern did not change between 45 and 180 d indicating that neurofilament proteins in the second pool constitute a relatively stationary structure in axons. Based on the relative radioactivities and residence time (or turnover) of each neurofilament pool in axons, we estimate that, in the steady state, more neurofilament proteins in mouse RGC axons may be stationary than are undergoing continuous slow axoplasmic transport. This conclusion was supported by biochemical analyses of total NFP content and by electron microscopic morphometric studies of neurofilament distribution along RGC axons. The 70-, 140-, and 200-kD subunits displayed a 2.5-fold proximal to distal gradient of increasing content along RGC axons. Neurofilaments were more numerous at distal axonal levels, paralleling the increased content of NFP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Optic nerve formation requires precise retinal ganglion cell (RGC) axon pathfinding within the retina to the optic disc, the molecular basis of which is not well understood. At CNS targets, interactions between Eph receptor tyrosine kinases on RGC axons and ephrin ligands on target cells have been implicated in formation of topographic maps. However, studies in chick and mouse have shown that both Eph receptors and ephrins are also expressed within the retina itself, raising the possibility that this receptor-ligand family mediates aspects of retinal development. Here, we more fully document the presence of specific EphB receptors and B-ephrins in embryonic mouse retina and provide evidence that EphB receptors are involved in RGC axon pathfinding to the optic disc. We find that as RGC axons begin this pathfinding process, EphB receptors are uniformly expressed along the dorsal-ventral retinal axis. This is in contrast to the previously reported high ventral-low dorsal gradient of EphB receptors later in development when RGC axons map to CNS targets. We show that mice lacking both EphB2 and EphB3 receptor tyrosine kinases, but not each alone, exhibit increased frequency of RGC axon guidance errors to the optic disc. In these animals, major aspects of retinal development and cellular organization appear normal, as do the expression of other RGC guidance cues netrin, DCC, and L1. Unexpectedly, errors occur in dorsal but not ventral retina despite early uniform or later high ventral expression of EphB2 and EphB3. Furthermore, embryos lacking EphB3 and the kinase domain of EphB2 do not show increased errors, consistent with a guidance role for the EphB2 extracellular domain. Thus, while Eph kinase function is involved in RGC axon mapping in the brain, RGC axon pathfinding within the retina is partially mediated by EphB receptors acting in a kinase-independent manner.  相似文献   

10.
GAP-43 is an abundant intracellular growth cone protein that can serve as a PKC substrate and regulate calmodulin availability. In mice with targeted disruption of the GAP-43 gene, retinal ganglion cell (RGC) axons fail to progress normally from the optic chiasm into the optic tracts. The underlying cause is unknown but, in principle, can result from either the disruption of guidance mechanisms that mediate axon exit from the midline chiasm region or defects in growth cone signaling required for entry into the lateral diencephalic wall to form the optic tracts. Results here show that, compared to wild-type RGC axons, GAP-43-deficient axons exhibit reduced growth in the presence of lateral diencephalon cell membranes. Reduced growth is not observed when GAP-43-deficient axons are cultured with optic chiasm, cortical, or dorsal midbrain cells. Lateral diencephalon cell conditioned medium inhibits growth of both wild-type and GAP-43-deficient axons to a similar extent and does not affect GAP-43-deficient axons more so. Removal or transplant replacement of the lateral diencephalon optic tract entry zone in GAP-43-deficient embryo preparations results in robust RGC axon exit from the chiasm. Together these data show that RGC axon exit from the midline region does not require GAP-43 function. Instead, GAP-43 appears to mediate RGC axon interaction with guidance cues in the lateral diencephalic wall, suggesting possible involvement of PKC and calmodulin signaling during optic tract formation.  相似文献   

11.

Background

During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC) axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs) belong to the class of small non-coding RNA molecules and have been identified as important regulators of a variety of processes during embryonic development. However, their involvement in axon guidance decisions is less clear.

Methodology/Principal Findings

We report here that the early loss of Dicer, an essential protein for the maturation of miRNAs, in all cells of the forming retina and optic chiasm leads to severe phenotypes of RGC axon pathfinding at the midline. Using a conditional deletion approach in mice, we find in homozygous Dicer mutants a marked increase of ipsilateral projections, RGC axons extending outside the optic chiasm, the formation of a secondary optic tract and a substantial number of RGC axons projecting aberrantly into the contralateral eye. In addition, the mutant mice display a microphthalmia phenotype.

Conclusions

Our work demonstrates an important role of Dicer controlling the extension of RGC axons to the brain proper. It indicates that miRNAs are essential regulatory elements for mechanisms that ensure correct axon guidance decisions at the midline and thus have a central function in the establishment of circuitry during the development of the nervous system.  相似文献   

12.
The Eph family is thought to exert its function through the complementary expression of receptors and ligands. Here, we show that EphA receptors colocalize on retinal ganglion cell (RGC) axons with EphA ligands, which are expressed in a high-nasal-to-low-temporal pattern. In the stripe assay, only temporal axons are normally sensitive for repellent axon guidance cues of the caudal tectum. However, overexpression of ephrinA ligands on temporal axons abolishes this sensitivity, whereas treatment with PI-PLC both removes ephrinA ligands from retinal axons and induces a striped outgrowth of formerly insensitive nasal axons. In vivo, retinal overexpression of ephrinA2 leads to topographic targeting errors of temporal axons. These data suggest that differential ligand expression on retinal axons is a major determinant of topographic targeting in the retinotectal projection.  相似文献   

13.
14.
RGC axons extend in the optic tracts in a manner that correlates with the expression in the hypothalamus and epithalamus of a soluble factor inhibitory to RGC axon outgrowth. Additionally, although the RGC axons extend adjacent to the telencephalon, they do not normally grow into this tissue. Here, we show that slit1 and slit2, known chemorepellents for RGC axons expressed in specific regions of the diencephalon and telencephalon, help regulate optic tract development. In mice lacking slit1 and slit2, a subset of RGC axons extend into the telencephalon and grow along the pial surface but not more deeply into this tissue. Surprisingly, distinct guidance errors occur in the telencephalon of slit1 -/-; slit2 +/- and slit1/2 -/- embryos, suggesting that the precise level of Slits is critical for determining the path followed by individual axons. In mice lacking both slit1 and slit2, a subset of RGC axons also project aberrantly into the epithalamus, pineal and across the dorsal midline. However, many axons reach their primary target, the superior colliculus. This demonstrates that Slits play an important role in directing the guidance of post-crossing RGC axons within the optic tracts but are not required for target innervation.  相似文献   

15.
16.
BDNF and NT-4 (but not NT-3 or CNTF) significantly enhanced the outgrowth of early embryonic and adult regenerating RGC axons when provided with a supportive substrate in vitro. BDNF and NT-4 treatment transiently increased RGC axon outgrowth from E15 rat retinas but not from retinas at older embryonic ages. The transient effect of BDNF and NT-4 and the inability of the neurotrophins to promote outgrowth from older embryonic retinal explants suggests a time frame of neurotrophin action and that other chemical factors (target-derived or otherwise) may be necessary for the continued maintenance of developing RGC axons. BDNF and NT-4 also enhanced the outgrowth of regenerating axons from adult retinal explants, but appeared to have a more subtle effect on axon outgrowth, in that the growth-promoting effects of BDNF and NT-4 appeared continuous throughout the incubation period. The suppression of RGC axon outgrowth from embryonic and adult retinae cultured in trkB-IgG-containing medium suggests that the response of developing and regenerating axons, to BDNF and NT-4 are likely to occur through trkB signalling.  相似文献   

17.
Cell adhesion molecules play a central role in mediating axonal tract development within the nascent nervous system. NF-protocadherin (NFPC), a member of the non-clustered protocadherin family, has been shown to regulate retinal ganglion cell (RGC) axon and dendrite initiation, as well as influencing axonal navigation within the mid-optic tract. However, whether NFPC mediates RGC axonal behaviour at other positions within the optic pathway remains unclear. Here we report that NFPC plays an important role in RGC axonogenesis, but not in intraretinal guidance. Moreover, axons with reduced NFPC levels exhibit insensitivity to Netrin-1, an attractive guidance cue expressed at the optic nerve head. Netrin-1 induces rapid turnover of NFPC localized to RGC growth cones, suggesting that the regulation of NFPC protein levels may underlie Netrin-1-mediated entry of RGC axons into the optic nerve head. At the tectum, we further reveal a function for NFPC in controlling RGC axonal entry into the final target area. Collectively, our results expand our understanding of the role of NFPC in RGC guidance and illustrate that this adhesion molecule contributes to axon behaviour at multiple points in the optic pathway.  相似文献   

18.
In the developing retina, retinal ganglion cell (RGC) axons elongate toward the optic fissure, even though no obvious directional restrictions exist. Previous studies indicate that axon-matrix interactions are important for retinal ganglion cell axon elongation, but the factors that direct elongation are unknown. Chondroitin sulfate proteoglycan (CS-PG), a component of the extracellular matrix, repels elongating dorsal root ganglion (DRG) axons in vitro and is present in vivo in the roof plate of the spinal cord, a structure that acts as a barrier to DRG axons during development. In this study, we examined whether CS-PG may regulate the pattern of retinal ganglion cell outgrowth in the developing retina. Immunocytochemical analysis showed that CS-PG was present in the innermost layers of the developing rat retina. The expression of CS-PG moved peripherally with retinal development, always remaining at the outer edge of the front of the developing axons. CS-PG was no longer detectable with immunocytochemical techniques when RGC axon elongation in the retina is complete. Results of studies in vitro showed that CS-PG, isolated from bovine nasal cartilage and chick limb, was inhibitory to elongating RGC axons and that RGC growth cones were more sensitive to CS-PG than were DRG neurites tested at the same concentrations of CS-PG. The behavior of retinal growth cones as they encounter CS-PG was characterized using time-lapse video microscopy. Filopodia of the RGC growth cones extended to and sampled the CS-PG repeatedly. With time, the growth cones turned to avoid outgrowth on the CS-PG and grew only on laminin. While numerous studies have shown the presence of positive factors within the retina that may guide developing RGC axons, this is the first demonstration of an inhibitory or repelling molecule in the retina that may regulate axon elongation. Taken together, these data suggest that the direction of RGC outgrowth in the retina may be regulated by the proper ratio of growth-promoting molecules, such as laminin, to growth-inhibiting molecules, like CS-PG, present in the correct pattern and concentrations along the retinal ganglion cell pathway.  相似文献   

19.
The circuit for binocular vision and stereopsis is established at the optic chiasm, where retinal ganglion cell (RGC) axons diverge into the ipsilateral and contralateral optic tracts. In the mouse retina, ventrotemporal (VT) RGCs express the guidance receptor EphB1, which interacts with the repulsive guidance cue ephrin‐B2 on radial glia at the optic chiasm to direct VT RGC axons ipsilaterally. RGCs in the ventral retina also express EphB2, which interacts with ephrin‐B2, whereas dorsal RGCs express low levels of EphB receptors. To investigate how growth cones of RGCs from different retinal regions respond upon initial contact with ephrin‐B2, we utilized time‐lapse imaging to characterize the effects of ephrin‐B2 on growth cone collapse and axon retraction in real time. We demonstrate that bath application of ephrin‐B2 induces rapid and sustained growth cone collapse and axon retraction in VT RGC axons, whereas contralaterally‐projecting dorsotemporal RGCs display moderate growth cone collapse and little axon retraction. Dose response curves reveal that contralaterally‐projecting ventronasal axons are less sensitive to ephrin‐B2 treatment compared to VT axons. Additionally, we uncovered a specific role for Rho kinase signaling in the retraction of VT RGC axons but not in growth cone collapse. The detailed characterization of growth cone behavior in this study comprises an assay for the study of Eph signaling in RGCs, and provides insight into the phenomena of growth cone collapse and axon retraction in general. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 781–794, 2010  相似文献   

20.
The eye is a peripheral outpost of the central nervous system (CNS) where the retinal ganglion cells (RGCs) reside. RGC axons navigate to their targets in a remarkably stereotyped and error-free manner and it is this process of directed growth that underlies the complex organization of the adult brain. The RGCs are the only retinal neurons to project into the brain and their peripheral location makes them an unusually accessible population of projection neurons for experiments involving in vivo gene transfer, anatomical tracing, transplantation and in vitro culture. In this paper, we review recent findings that have contributed to our understanding of some of the guidance decisions that axons make in the developing visual system. We look at two choice points in the pathway, the optic nerve head (onh) and the midline chiasm, and discuss evidence that supports the idea that key molecules in guiding axon growth at these junctures are netrin-1 (onh) and ephrin-B (chiasm). In the optic tectum where RGC axon terminals are arrayed in topographic order, we present experimental evidence to suggest that in the dorso-ventral dimension, the B-type ephrins and Eph receptors are of prime importance, possibly through attractive interactions. This complements the anterior-posterior topographic mapping known to be mediated through A-type ephrin/Eph repulsive interactions. An emerging theme is that guidance molecules such as ephrin-B and netrin-1 have complex patterns of restricted expression in the pathway and play multiple and changing roles in axon guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号