首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A variety of milk-derived biologically active peptides have been shown to exert both functional and physiological roles in vitro and in vivo, and because of this are of particular interest for food science and nutrition applications. Biological activities associated with such peptides include immunomodulatory, antibacterial, anti-hypertensive and opioid-like properties. Milk proteins are recognized as a primary source of bioactive peptides, which can be encrypted within the amino acid sequence of dairy proteins, requiring proteolysis for release and activation. Fermentation of milk proteins using the proteolytic systems of lactic acid bacteria is an attractive approach for generation of functional foods enriched in bioactive peptides given the low cost and positive nutritional image associated with fermented milk drinks and yoghurt. In Part II of this review, we focus on examples of milk-derived bioactive peptides and their associated health benefits, to illustrate the potential of this area for the design and improvement of future functional foods.  相似文献   

2.
Recently the rise in noncommunicable diseases and side effects of drugs has promoted the research in food components with biologically active molecules. These bioactive components are vital in reducing and regulating the onset of such chronic degenerative diseases. Many food derived peptides are biologically active fragments encrypted within the primary protein sequence in nascent (inactive) form, hence also called ‘cryptides’. These bioactive peptides range in size from 2 to 50 amino acids. They function beyond their basic nutritional benefits. Upon oral administration, these peptides play various roles such as opiate like, antioxidative, immunomodulatory, antihypertensive, hypocholesterolemic, mineral binding, antiobesity and antimicrobial. Both animal and plant proteins are rich sources of bioactive peptides having specific physiological and biochemical functions. Digestion of proteins in vivo or in vitro produces free amino acids and peptides which enter circulatory system and exert systemic effect. Bioactive peptides can be produced in vivo through gastrointestinal digestion whereas in vitro through chemical processing of food proteins with acid, alkali, heat and enzymatic hydrolysis either by digestion or fermentation. Protein hydrolysates being rich source of bioactive peptides can serve as an alternative to intact protein and elemental formula in the development of functional foods.  相似文献   

3.
The dipeptides Ala-Trp, Val-Phe, and Val-Tyr inhibit the angiotensin-I-converting enzyme. They are encrypted within the primary sequences of different food proteins, e.g. milk proteins. The angiotensin-I-converting enzyme inhibitory potency of these synthetic dipeptides was quantified using a spectrophotometric assay. The dipeptides showed no adverse effects on differentiated Caco-2 cells (model for human intestinal epithelium), as confirmed by transepithelial electrical resistance, microscopy and the activity of the brush-border enzyme dipeptidyl aminopeptidase IV. Furthermore, the transport of these bioactive dipeptides through intact Caco-2 monolayers and their stability to incubation in human blood serum has been demonstrated for the first time. Low molecular mass peptides represent the minimal structures required for angiotensin-I-converting enzyme inhibition which have a high potential bioavailability. Therefore, they may act as target peptides in enriched hydrolysates for the preparation of an angiotensin-I-converting enzyme inhibitory peptide and for the use in special formulations as functional foods/foods of specified health use.  相似文献   

4.
Multifunctional peptides encrypted in milk proteins   总被引:7,自引:0,他引:7  
Many bioactivities of milk are latent in that they are inactive within the protein sequence, requiring enzymatic proteolysis for release of bioactive peptides from milk proteins precursors. Bioactivities of peptides encrypted in major milk proteins are latent until released and activated, e.g. during gastrointestinal digestion or food processing. Bioactive peptides can be produced in vivo following intake of milk proteins, and the proteolytic system of bacterial species used in the production of fermented milk products and cheese can contribute to the liberation of bioactive peptides or precursors thereof. Activated peptides are potential modulators of various regulatory processes in the living system: immunomodulatory peptides stimulate the activities of cells of the immune system and several cytomodulatory peptides inhibit cancer cell growth, antimicrobial peptides kill sensitive microorganisms, angiotensin-I-converting enzyme (ACE)-inhibitory peptides exert an hypotensive effect, opioid peptides are opioid receptor ligands which can modulate absorption processes in the intestinal tract, mineral binding peptides may function as carriers for different minerals, especially calcium. Many milk-derived peptides reveal multifunctional properties, i.e. specific peptide sequences having two or more different biological activities have been reported. Milk protein-derived bioactive peptides are claimed to be health enhancing components that can be used to reduce the risk of disease or to enhance a certain physiological function.  相似文献   

5.
The bioactivities of peptides encrypted in major milk proteins are latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. The proteolytic system of lactic acid bacteria can contribute to the liberation of bioactive peptides. In vitro, the purified cell wall proteinase of Lactococcus lactis was shown to liberate oligopeptides from - and -caseins which contain amino acid sequences present in casomorphins, casokinines, and immunopeptides. The further degradation of these peptides by endopeptidases and exopeptidases of lactic acid bacteria could lead to the liberation of bioactive peptides in fermented milk products. However, the sequences of practically all known biologically active peptides can also be cleaved by peptidases from lactic acid bacteria. Activated peptides are potential modulators of various regulatory processes in the body: Opioid peptides are opioid receptor ligands which can modulate ab sorption processes in the intestinal tract, angiotensin-I-converting enzyme (ACE)-inhibitory peptides are hemodynamic regulators and exert an antihypertensive effect, immunomodulating casein peptides stimulate the activities of cells of the immune system, antimicrobial peptides kill sensitive microorganisms, antithrombotic peptides inhibit aggregation of platelets and caseinophosphopeptides may function as carriers for different minerals, especially calcium. Bioactive peptides can interact with target sites at the luminal side of the intestinal tract. Furthermore, they can be absorbed and then reach peripheral organs. Food-derived bioactive peptides are claimed to be health enhancing components which can be used for functional food and pharmaceutical preparations.  相似文献   

6.
The growing interest of consumers towards nutritionally enriched, and health promoting foods, provoke interest in the eventual development of fermented functional foods. Soymilk is a growing trend that can serve as a low-cost non-dairy alternative with improved functional and nutritional properties. Soymilk acts as a good nutrition media for the growth and proliferation of the micro-organism as well as for their bioactivities. The bioactive compounds produced by fermentation of soymilk with lactic acid bacteria (LAB) exhibit enhanced nutritional values, and several improved health benefits including antihypertensive, antioxidant, antidiabetic, anticancer and hypocholesterolaemic effects. The fermented soymilk is acquiring a significant position in the functional food industry due to its increased techno-functional qualities as well as ensuring the survivability of probiotic bacteria producing diverse metabolites. This review covers the important benefits conferred by the consumption of soymilk fermented by LAB producing bioactive compounds. It provides a holistic approach to obtain existing knowledge on the biofunctional attributes of fermented soymilk, with a focus on the functionality of soymilk fermented by LAB.  相似文献   

7.
Vascular diseases such as atherosclerosis, stroke or myocardial infarction are a significant public health problem worldwide. Attempts to prevent vascular diseases often imply modifications and improvement of causative risk factors such as high blood pressure, obesity, an unfavorable profile of blood lipids or insulin resistance. In addition to numerous preventive and therapeutic drug regimens, there has been increased focus on identifying dietary compounds that may contribute to cardiovascular health in recent years. Food-derived bioactive peptides represent one such source of health-enhancing components. They can be released during gastrointestinal digestion or food processing from a multitude of plant and animal proteins, especially milk, soy or fish proteins. Biologically active peptides are considered to promote diverse activities, including opiate-like, mineral binding, immunomodulatory, antimicrobial, antioxidant, antithrombotic, hypocholesterolemic and antihypertensive actions. By modulating and improving physiological functions, bioactive peptides may provide new therapeutic applications for the prevention or treatment of chronic diseases. As components of functional foods or nutraceuticals with certain health claims, bioactive peptides are of commercial interest as well. The current review centers on bioactive peptides with properties relevant to cardiovascular health.  相似文献   

8.
Many peptides that are released in vitro or in vivo from animal or plant proteins are bioactive and have regulatory functions in humans beyond normal and adequate nutrition. Different health effects have been attributed to food-derived peptides, including antimicrobial properties, blood pressure-lowering (ACE inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption and/or bioavailability, cyto- or immunomodulatory effects, and opioid activities. Numerous products are already on the market or under development by food companies that exploit the potential of food-derived bioactive peptides and which ascribe scientifically evidenced health claims to consumption of these functional foods.  相似文献   

9.
To date, a number of antihypertensive peptides (AHPs) have been identified. Most of these are derived from proteins present in common edible consumables, including milk, egg, and plant foods. Consumption of these foods serves as means of AHP delivery and thus contributing favorable health benefits. It is hypothesized that food crops, either over-expressing AHP precursor proteins or producing particular peptides as heterologous components, may serve as viable vehicles for production and delivery of functional foods as alternative hypertension therapies. In recent years, genetic engineering efforts have been undertaken to add value to functional foods. Pioneering approaches have been pursued in several crop plants, such as rice and soybean. In this review, a summary of current tools used for discovery of new AHPs, as well as strategies and perspectives of capitalizing on these AHPs in genetic engineering efforts will be presented and discussed. The implications of these efforts on the development of functional foods for preventing and treating hypertension are also presented.  相似文献   

10.
Human milk is the optimal mode of infant feeding for the first several months of life, and infant formulas serve as an alternative when breast-feeding is not possible. Milk proteins have a balanced amino acid composition and some of them provide beneficial bioactivities in their intact forms. They also encrypt a variety of bioactive peptides, possibly contributing to infant health and growth. However, there is limited knowledge of how milk proteins are digested in the gastrointestinal tract and bioactive peptides are released in infants. A peptidomic analysis was conducted to identify peptides released from milk proteins in human milk and infant formula, using a suckling rat pup model. Among the major milk proteins targeted, α-lactalbumin and β-casein in human milk, and β-lactoglobulin and β-casein in infant formula were the main sources of peptides, and these peptides covered large parts of the parental proteins’ sequences. Release of peptides was concentrated to specific regions, such as residues 70–92 of β-casein in human milk, residues 39–55 of β-lactoglobulin in infant formula, and residues 57–96 and 145–161 of β-CN in infant formula, where resistance to gastrointestinal digestion was suggested. In the context of bioactive peptides, release of fragments containing known bioactive peptides was confirmed, such as β-CN-derived opioid and antihypertensive peptides. It is therefore likely that these fragments are of biological significance in neonatal health and development.  相似文献   

11.
Kefir is a homemade viscous and slightly effervescent beverage obtained by milk fermentation with kefir grains, which are built up by a complex community of lactic acid and acetic acid bacteria and yeasts confined in a matrix of proteins and polysaccharides. The present review summarizes the role of kefir micro-organisms in grain assembly and in the beneficial properties attributed to kefir. The use of both culture-dependent and independent methods has made possible to determine the micro-organisms that constitute this ecosystem. Kefir consumption has been associated with a wide range of functional and probiotic properties that could be attributed to the micro-organisms present in kefir and/or to the metabolites synthetized by them during milk fermentation. In this context, the role of micro-organisms in kefir health promoting properties is discussed with particular attention to the contribution of yeast as well as bioactive metabolites such as lactic and acetic acid, exopolysaccharides and bioactive peptides. Even though many advances on the knowledge of this ancient fermented milk have been made, further studies are necessary to elucidate the complex nature of the kefir ecosystem.  相似文献   

12.
Beneficial health effects of milk and fermented dairy products — Review   总被引:1,自引:1,他引:0  
Milk is a complex physiological liquid that simultaneously provides nutrients and bioactive components that facilitate the successful postnatal adaptation of the newborn infant by stimulating cellular growth and digestive maturation, the establishment of symbiotic microflora, and the development of gut-associated lymphoid tissues. The number, the potency, and the importance of bioactive compounds in milk and especially in fermented milk products are probably greater than previously thought. They include certain vitamins, specific proteins, bioactive peptides, oligosaccharides, organic (including fatty) acids. Some of them are normal milk components, others emerge during digestive or fermentation processes. Fermented dairy products and probiotic bacteria decrease the absorption of cholesterol. Whey proteins, medium-chain fatty acids and in particular calcium and other minerals may contribute to the beneficial effect of dairy food on body fat and body mass. There has been growing evidence of the role that dairy proteins play in the regulation of satiety, food intake and obesity-related metabolic disorders. Milk proteins, peptides, probiotic lactic acid bacteria, calcium and other minerals can significantly reduce blood pressure. Milk fat contains a number of components having functional properties. Sphingolipids and their active metabolites may exert antimicrobial effects either directly or upon digestion.  相似文献   

13.
Najafian L  Babji AS 《Peptides》2012,33(1):178-185
Fishes are rich sources of structurally diverse bioactive compounds. In recent years, much attention has been paid to the existence of peptides with biological activities and proteins derived from foods that might have beneficial effects for humans. Antioxidant and antimicrobial peptides isolated from fish sources may be used as functional ingredients in food formulations to promote consumer health and improve the shelf life of food products. This paper presents an overview of the antioxidant and antimicrobial peptides derived from various fishes. In addition, we discuss the extraction of fish proteins, enzymatic production, and the techniques used to isolate and characterize these compounds. Furthermore, we review the methods used to assay the bioactivities and their applications in food and nutraceuticals.  相似文献   

14.
The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body of comprehensive data on their metabolism and genetics was generated throughout the years. This knowledge has been instrumental in the implementation of successful applications in the food industry, such as the selection of robust starter cultures with desired phenotypic traits. The advent of genomics, functional genomics and high-throughput experimentation combined with powerful computational tools currently allows for a systems level understanding of these food industry workhorses. The technological developments in the last decade have provided the foundation for the use of LAB in applications beyond the classic food fermentations. Here we discuss recent metabolic engineering strategies to improve particular cellular traits of LAB and to design LAB cell factories for the bioproduction of added value chemicals.  相似文献   

15.
Macroalgae are a diverse group of marine organisms that have developed complex and unique metabolic pathways to ensure survival in highly competitive marine environments. As a result, these organisms have been targeted for mining of natural biologically active components. The exploration of marine organisms has revealed numerous bioactive compounds that are proteinaceous in nature. These include proteins, linear peptides, cyclic peptides and depsipeptides, peptide derivatives, amino acids, and amino acid–like components. Furthermore, some species of macroalgae have been shown to contain significant levels of protein. While some protein‐derived bioactive peptides have been characterized from macroalgae, macroalgal proteins currently still represent good candidate raw materials for biofunctional peptide mining. This review will provide an overview of the important bioactive amino‐acid‐containing compounds that have been identified in macroalgae. Moreover, the potential of macroalgal proteins as substrates for the generation of biofunctional peptides for utilization as functional foods to provide specific health benefits will be discussed.  相似文献   

16.
The beneficial effects of food-derived antioxidants in health promotion and disease prevention are being increasingly recognized. Recently, there has been a particular focus on milk-derived peptides; as a source of antioxidants, these peptides are inactive within the sequence of the parent protein but can be released during enzyme hydrolysis. Once released, the peptides have been shown to possess radical scavenging, metal ion chelation properties and the ability to inhibit lipid peroxidation. A variety of methods have been used to evaluate in vitro antioxidant activity, however, there is no standardised methodology, which hinders comparison of data. This review provides an overview on the generation of antioxidative peptides from milk proteins, the proposed mechanisms of protein/peptide induced antioxidant activity, in vitro measurement of antioxidant activity, in vivo evaluation of plasma antioxidant capacity and the bioavailability of antioxidative peptides. The understanding gained from other food proteins is referred to where specific data on milk-derived peptides are limited. The potential applications and health benefits of antioxidant peptides are discussed with a particular focus on the aging population. The regulatory requirements for peptide-based antioxidant functional foods are also considered.  相似文献   

17.
Food-derived peptides and intestinal functions   总被引:1,自引:0,他引:1  
Many researchers have reported that food proteins and their peptides expressed a variety of functions in the body, including a reduction of blood pressure, modulation of immune cell functions, and regulation of nerve functions. However, food-derived proteins and peptides also play important roles in the intestinal tract before being absorbed. For example, some of the proteins and peptides can regulate the activity of digestive enzymes in the intestinal tract, thereby modulating the nutrient absorption in the intestines. These proteins and peptides have been used for functional foods with blood glucose- and blood cholesterol-lowering effects. Enhancement of the intestinal calcium absorption by casein-derived peptides is another example, such peptides being used as functional food ingredients. We have recently observed that certain milk peptides might stimulate the calcium transporter in intestinal epithelial cells. Carnosine, a dipeptide contained in skeletal muscles, was observed to suppress the secretion of inflammatory cytokines by intestinal epithelial cells that had been exposed to oxidative stress. Understanding the behavior of dietary proteins and peptides in the intestines is important for designing functional foods with physiological functions.  相似文献   

18.
Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides   总被引:1,自引:0,他引:1  
Recent studies have shown that most peptide sequences encrypted in food proteins confer bioactive properties after release by enzymatic hydrolysis. Such bioactivities, which include antithrombotic, antihypertensive, immunomodulatory and antioxidant properties, are among the traits that are of biological significance in therapeutic products. Bioactive peptides could therefore serve as potential therapeutic agents. Moreover, research has shown that peptide therapeutics are toxicologically safe, and present less side effects when compared to small molecule drugs. However, the major conventional methods i.e. the synthetic and biotechnological methods used in the production of peptide therapeutics are relatively expensive. The lack of commercially-viable processes for large-scale production of peptide therapeutics has therefore been a major hindrance to the application of peptides as therapeutic aids. This paper therefore discusses the plausibility of manufacturing pharmaceutical-grade bioactive peptides from food proteins; the challenges and some implementable strategies for overcoming those challenges.  相似文献   

19.
Human milk contains a multitude of bioactive proteins with very diverse functions, which are beneficial for the rapidly growing neonate. The large variety of bioactivities is accomplished by the combination of bioactive proteins per se and gastrointestinal release of bioactive peptides derived from them. The bioactivities exerted by these peptides include enhancement of mineral absorption, immunomodulation, opioid, antihypertensive and antimicrobial activities. Notably, several of the activities are not attributed to the parental proteins, but exclusively to released bioactive peptides. This article reviews studies on bioactive peptides derived from major human milk proteins, such as caseins, α-lactalbumin and lactoferrin, during gastrointestinal digestion. Studies of bovine milk counterparts are also cited as a comparison.  相似文献   

20.
Rice processing industry released an enormous amount of the rice bran which is underutilized. Rice bran contains various proteins that can be used for the production of bioactive peptides. These bioactive peptides might be suitable ingredients for the development of functional food products. The objective of this study was to explore the potential of rice bran-derived globulin proteins as a suitable precursor of bioactive peptides with especially reference to dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. The various computational approaches (BLAST, BIOPEP, PeptideRanker, PepDraw, Pepcalc, and ToxinPred) were used to predict the potential of the globulin proteins. Ficain protease majorly released the DPP-IV inhibitory peptides from rice bran-derived globulin proteins as compared with other proteases used in this study. Furthermore, primary structure, physico-chemical, sensory, and allergic characteristics of the theoretically release bioactive DPP-IV inhibitory peptides were also studied. The result of this study provides a theoretical basis for the development of rice bran globulin proteins as a suitable source for the generation of bio-functional ingredients for glycaemic management and further demonstrates the usefulness of computational approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号