首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Opioid and alpha-adrenergic receptor activation protect the heart from ischemic damage. One possible intracellular mechanism to explain this is that an improvement in ATP availability contributes to cardioprotection. We tested this hypothesis by correlating postischemic left ventricular developed pressure (LVDP) and myofibrillar Ca(2+)-dependent actomyosin Mg(2+)-ATPase from isolated rat hearts treated with the kappa-opioid receptor agonist U-50488H (1 microM) or the alpha-adrenergic receptor agonist phenylephrine (10 microM) + propranolol (3 microM). Preischemic treatment with U-50488H or phenylephrine + propranolol improved postischemic LVDP recovery by 25-30% over control hearts. Ca(2+)-dependent actomyosin Mg(2+)-ATPase was found to be 20% lower in both U-50488H- and phenylephrine + propranolol-treated hearts compared with control hearts. The kappa-opioid receptor antagonist nor-binaltorphimine (1 microM) abolished the effects of U-50488H on postischemic LVDP and actomyosin Mg(2+)-ATPase activity. Reduced actomyosin ATP utilization was also suggested in single ventricular myocytes treated with either U-50488H or the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), because U-50488H and PMA lowered maximum velocity of unloaded shortening by 15-25% in myocytes. U-50488H and phenylephrine + propranolol treatment both resulted in increased phosphorylation of troponin I and C protein. These findings are consistent with the hypothesis that kappa-opioid and alpha-adrenergic receptors decrease actin-myosin cycling rate, leading to a conservation of ATP and cardioprotection during ischemia.  相似文献   

2.
Intravenous administration of the kappa-opioid agonists U50488H, tifluadom, and ethylketocyclazocine induced a characteristic diuresis in conscious, intact, saline-loaded rats. Naloxone pretreatment antagonized U50488H-induced diuresis. The diuretic response to the kappa-opioid agonists was significantly attenuated in adrenal demedullated rats. However, basal urine output, the diuretic response to furosemide, and the antidiuretic response to the mu-opioid agonist buprenorphine were unaffected. Transfusion studies established that 1 mL of blood, from intact donor rats treated with U50488H, induced a diuretic response when administered to intact or demedullated recipient rats, whether or not the recipients had been pretreated with naloxone. However, blood from demedullated rats treated with U50488H was unable to induce diuresis in intact or demedullated recipients. The results indicate that kappa-opioid agonist induced diuresis appears to be mediated by a nonopioid blood-borne "diuretic factor" of adrenomedullary origin and that this factor might be responsible for the dependence of the diuretic response upon an intact and functional adrenal medulla in conscious rats.  相似文献   

3.
The inhibitory effects of kappa-opioid receptor agonists on systemic skin scratching induced by the intravenous administration of morphine, a micro-opioid receptor agonist, were investigated in rhesus monkeys. Intravenous pretreatment with kappa-opioid receptor agonists, either TRK-820 at 0.25 and 0.5 microg/kg or U-50488H at 64 and 128 microg/kg, inhibited systemic skin scratching induced by morphine at 1 mg/kg, i.v. in a dose-dependent manner. By the intragastric route, apparent inhibitory effects on morphine-induced systemic skin scratching were evident following pretreatment with TRK-820 at 4 microg/kg but not with U-50488H from 512 to 2048 microg/kg. These results suggest that TRK-820 produces antipruritic effects on i.v. morphine-induced systemic skin scratching and is more readily absorbed intragastrically than is U-50488H, resulting in high bioavailability in the intragastric route.  相似文献   

4.
This study examined the hypothesis that vagotonic and sympatholytic effects of cardiac enkephalins are independently mediated by different receptors. A dose-response was constructed by administering the delta-receptor opioid methionine-enkephalin-arginine-phenylalanine (MEAP) by microdialysis into the interstitium of the canine sinoatrial node during vagal and sympathetic stimulation. The right cardiac sympathetic nerves were stimulated as they exited the stellate ganglion at frequencies selected to increase heart rate approximately 35 bpm. The right cervical vagus was stimulated at frequencies selected to produce a two-step decline in heart rate of 25 and 50 bpm. A six-step dose-response was constructed by recording heart rates during nerve stimulation as the dose of MEAP was increased between 0.05 pmol/min and 1.5 nmol/min. Vagal transmission improved during MEAP at 0.5 pmol/min. However, sympathetically mediated tachycardia was unaltered with any dose of MEAP. In Study 2, a similar dose-response was constructed with the kappa-opioid receptor agonist trans(+/-)-3-4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide-HCl (U-50488H) to illustrate an independent sympatholytic effect and to verify its kappa-receptor character. U-50488H gradually suppressed the sympathetic tachycardia, with a significant effect obtained only at the highest dose (1.5 nmol/min). U-50488H had no effect on vagally mediated bradycardia. Surprisingly, the sympatholytic effect was not reversed by withdrawing U-50488H or by the subsequent addition of the kappa-antagonist 17,17'-(dichloropropylmethyl)-6,6',7,7'-6,6'-imino-7,7'-binorphinan-3,4',14,14'-tetroldi-hydrochloride (norBNI). Study 3 was conducted to determine whether the sympatholytic effect of U-50488H could be prevented by norBNI. NorBNI blocked the sympatholytic effect of the U50488H for 90 mins. When norBNI was discontinued afterward and U-50488H was continued alone, a sympatholytic effect emerged within 30 mins. Collectively these observations support the hypothesis that the vagotonic influence of MEAP is not dependent on a sympatholytic influence. Furthermore, the sympatholytic effect is mediated independently by kappa-receptors. The sympatholytic effect of sustained kappa-receptor stimulation appears to evolve gradually into a functional state not easily reversed.  相似文献   

5.
We have investigated the role of mu- and kappa-opioid receptors in the central control of preovulatory LH and FSH release in the proestrous rat. Animals were anesthetized with chloral hydrate at 14:00 h on proestrus day. Following femoral artery cannulation, they were mounted in a stereotaxic apparatus. Morphine and U-50488H (benzene-acetamide methane sulphonate) were infused intracerebroventricularly either alone or in combination with naloxone and MR1452, respectively. Controls received sterile saline alone. Blood samples were obtained at hourly intervals between 15:00 h and 17:00 h. Plasma LH and FSH levels were measured by radioimmunoassay. Morphine did not significantly change plasma LH levels at 15:00 h and 16:00 h sampling intervals. A significant increase was observed at 17:00 h compared to the controls (p<0.05). U-50488H significantly increased LH levels at 16:00 h and 17:00 h (p<0.05). The co-administration of naloxone and MR1452 with mu- and kappa-agonist had no significant effect on LH levels at any sampling interval. In all groups, LH levels showed a linear rise over the sampling period between 15:00 h and 17:00 h. None of the treatments significantly altered plasma FSH levels which however, declined towards the end of the afternoon surge. In conclusion, we suggest that the secretion of LH and FSH is differentially regulated by mu- and kappa-opioid receptors. It is thought that in all groups chloral hydrate interfered with the LH surge secretory systems.  相似文献   

6.
A morphometric study of kainic acid- (KA) induced lesions was designed for the study of the interaction of the diamines U-5449A and U-50488H with excitatory amino acids, and the dose-response relationship thereof. IC50S determined for binding at the kappa receptor and other opioid receptors demonstrated the lack of kappa activity of U-54494A, a structurally related analog of U-50488H. Both opiate kappa receptor related anticonvulsant diamines were tested for their ability to protect the mouse hippocampus from the cytopathological changes induced by KA in neurons and glia. The damage observed with i.c.v. KA in mouse was restricted to neurons of the CA3 pyramidal region and glia of the hippocampus. It involved massive cell loss and shrunken neurons with dark cytoplasm and nuclei. Groups treated with combinations of KA and U-54494A or U-50488H showed scarce damage, but patches of necrotic changes were still observed. Control animals treated with saline (i.c.v.) and U-54494A (s.c.) or U-50488H (s.c.) did not suffer any noticeable alterations of the polymorphic layers of the hippocampal formation. Image analysis of the CA3 area of the hippocampus was used to quantitate the vacuolization induced by KA lesions in the control and treated groups. By this method, both U-54494A and U-50488H were shown to protect this area in a dose-related fashion as evidenced by reduced vacuolization. The anticonvulsant properties of these compounds may result in the antagonism of the excitotoxic lesions. More specifically, the ability of these diamines to block depolarization-induced influxes of Ca++ may protect the CA3 cells from the cytotoxic effects of persistent depolarization.  相似文献   

7.
U-54494A, a 1,2-diamine anticonvulsant, and U-50488H, a structurally related agonist for opiate kappa receptors, were tested for effects on spontaneous and glutamate-evoked firing rates in cerebral cortex of urethane-anesthetized male Sprague-Dawley rats. Iontophoretic application of 1,2-diamines, glutamate diethyl ether (GDEE), or procaine depressed spontaneous and amino acid-induced firing of cortical neurones. With continued ejection of 1,2-diamines or procaine, firing was silenced completely, but GDEE could maintain a partial suppression. A rapid rebound of excitation followed cessation of procaine ejections, but not of other agents. Procaine, but not U-54494A, blocked axonal conduction of rabbit sciatic nerve. Intravenous U-54494A and U-50488H significantly depressed spontaneous firing rates of cortical neurones, but only the U-50488H effects were antagonized by naloxone. It is concluded that U-54494A inhibits neuronal excitability by a mechanism independent of the analgesic kappa receptor. Biochemical and physiological studies have demonstrated that U-54494A and the kappa opioid agonist U-50488H (a structurally related diamine) (1) have anticonvulsant activity (2, 3). U-54494A lacks kappa analgesic and sedative properties, and it has been suggested that the mechanism of action of this compound may be mediated by a subtype of kappa opioid receptor (3). The effects of kappa analgesics on neuronal firing in nociceptive pathways have been described (4, 5). However, no previous electrophysiological studies on U-54494A have been done. Since U-54494A antagonizes amino acid-induced seizures (3), the interactions of this compound with glutamate are of interest. In the present study, the antagonist efficacies of U-54494A and U-50488H for inhibiting spontaneous and 1-glutamate stimulated neurons of the rat prefrontal cerebral cortex were assessed after i.v. and microiontophoretic administration of the compounds. Effects observed with these routes of administration allow the observation of neuronal changes occurring immediately after administration and take advantage of the high temporal resolution provided by the electrophysiological recording techniques of single cells. A preliminary account of portions of this work have been previously disclosed (6).  相似文献   

8.
It has been demonstrated that the newly synthesized kappa-opioid receptor agonist TRK-820, which has a unique structure that is different from those of other prototypical kappa-opioid receptor agonists such as U-50,488H, exert some behavioral effects that differ from those induced by U-50,488H. Therefore, the present study was designed to examine the possible difference between the discriminative stimulus effects of TRK-820 and U-50,488H in rats. Substitution tests with several kappa-opioid receptor agonists were initiated in rats trained to discriminate between TRK-820 (40 microg/kg) or U-50,488H (3.0 mg/kg) and saline. In the cross-substitution tests, U-50,488H substituted for the discriminative stimulus effects of TRK-820, whereas TRK-820 did not substitute completely for those of U-50,488H, indicating that the discriminative stimulus effects of TRK-820 and U-50,488H were somewhat different. In the substitution tests, E-2078, but not R-84760, substituted for the discriminative stimulus effects of both TRK-820 and U-50,488H. KT-90, CI-977 and ICI-199441 each substituted for the discriminative stimulus effects of U-50,488H, but not to those of TRK-820. These results imply that these kappa-opioid receptor agonists possess U-50,488H-like discriminative stimulus effects. Furthermore, that U-50,488H and the other kappa-opioid receptor agonists substituted for the discriminative stimulus effects of U-50,488H, produced aversive effects in rats. These findings suggest the possibility that unlike those of TRK-820, the cue of the discriminative stimulus effects of U-50,488H may be, at least in part, associated with its aversive effects.  相似文献   

9.
In the present study, we found that complement C3a exerted central effects after intracerebroventricular administration in mice. At doses of 3 and 10 pmol/mouse, the peptide showed an antagonistic effect on analgesia induced by morphine and U-50488H, known to be mu- and kappa-opioid receptor agonists, respectively. Moreover, complement C3a improved scopolamine- and ischemia-induced amnesia at a dose of 10 pmol/mouse. Anti-analgesia was not observed by C3a des-Arg at 10 pmol/mouse. The present findings suggest that complement C3a may act as a peptide with anti-opioid activity in the central nervous system.  相似文献   

10.
Pruhs RJ  Peña RT  Quock RM 《Life sciences》2007,80(19):1816-1820
Intracerebroventricular (i.c.v.) administration of the neutral endopeptidase 24.11-inhibitor phosphoramidon evoked a dose-dependent antinociceptive effect in the mouse acetic acid abdominal constriction test. The present study was conducted to identify the opioid receptor subtype(s) that mediate phosphoramidon antinociception in this paradigm. Mice were pretreated with different opioid antagonists prior to being challenged with phosphoramidon, i.c.v., the mu-opioid agonist sufentanil, s.c., or the kappa-opioid agonist U-50,488H, s.c. Naltrexone significantly attenuated phosphoramidon-induced antinociception at an i.c.v. dose that also blocked both sufentanil and U-50,488H. The mu-opioid antagonist beta-funaltrexamine (beta-FNA) blocked phosphoramidon and sufentanil at an i.c.v. dose that did not block U-50,488H. The kappa-opioid antagonist nor-binaltorphimine (nor-BNI) produced dose-related effects. A low dose (10 microg) of nor-BNI had no effect on either phosphoramidon or sufentanil but did reduce U-50,488H antinociception. A higher dose (30 microg) of nor-BNI blocked phosphoramidon, sufentanil, and U-50,488H, suggesting a loss of kappa-opioid receptor selectivity at this dose. These findings suggest that mu- but not kappa-opioid receptors mediate phosphoramidon-induced antinociception in the abdominal constriction test.  相似文献   

11.
H N Bhargava  P Ramarao 《Life sciences》1989,45(26):2521-2528
The effect of cyclo(Leu-Gly) on U-50,488H- induced pharmacological actions was determined in male Sprague-Dawley rats. Intraperitoneal (i.p.) administration of U-50,488H to rats produced analgesia (tail-flick) and increased urinary output. Cyclo (Leu-Gly) (1-4 mg/kg, s.c.) antagonized the analgesic response to U-50,488H (25 mg/kg; i.p.). A dose of 10 mg/kg (i.p.) of U-50,488H increased the spontaneous urinary output which was antagonized by cyclo (Leu-Gly) (1-4 mg/kg; s.c.). To determine whether cyclo (Leu-Gly) was acting as a kappa-opioid receptor antagonist, the effect of cyclo (Leu-Gly) on the binding of [3H]ethylketocyclazocine (EKC) to membranes of rat cerebral cortex and spinal cord was determined. The IC50 values of cyclo(Leu-Gly) in displacing [3H]EKC from its binding sites in cortex and spinal cord were 1.44 and 0.40 mM, respectively. Chronic administration of U-50,488H (25 mg/kg; i.p., b.i.d.) for 4 days induced tolerance to its analgesic effect. The latter was not affected by cyclo(Leu-Gly) (2 to 8 mg/kg; s.c.) given once a day for 4 days. It is concluded that cyclo(Leu-Gly) antagonizes acute actions of U-50,488H and that such effects of cyclo(Leu-Gly) are not mediated via a direct action on kappa-opioid receptors.  相似文献   

12.
We have investigated the inter-relationship between the opioid and catecholaminergic systems in the control of LH secretion, and the involvement of &mgr;- and kappa-opioid subtypes in this process. Conscious female rats were intraperitoneally injected with either &mgr;- (diamorphine) or kappa-opioid agonists (U-50488H) alone or with their respective antagonists (naloxone and MR2266) before the critical period on pro-estrus. Hypothalamic catecholamine and plasma LH levels were determined by HPLC-ECD and RIA, respectively. Both &mgr;- and kappa-agonists significantly decreased concentrations of noradrenaline and its metabolite (DHPG) in all the hypothalamic regions examined concomitant with inhibition of the LH surge. Dopamine levels were selectively reduced only by the &mgr;-agonist in the MPOA. The inhibitory effects of both opioid agonists were mostly reversed following their co-administration with naloxone and MR2266 (except the kappa-antagonist on LH). These results indicate that both the &mgr;- and kappa-opioid subtypes may be involved in the inhibition of the LH surge by altering the hypothalamic noradrenaline content.  相似文献   

13.
S Iyengar  H S Kim  P L Wood 《Life sciences》1986,39(7):637-644
Four kappa opiate agonists, U-50488H, MR-2034, EKC and tifluadom, elevated plasma corticosterone and decreased plasma TSH in a dose-dependent manner. These effects were naloxone-reversible. However, WIN 44441-3, a long acting narcotic antagonist, was unable to reverse the effects of U-50488H and MR-2034 upto doses of 5 mg/kg. U-50488H and MR-2034 but not tifluadom or EKC, also increased levels of DOPAC and HVA in the olfactory tubercle. This effect was also naloxone-reversible but not WIN 44441-3 reversible. Tifluadom and EKC did not increase DOPAC and HVA. The differential responses of the tested kappa agonists to WIN 44441-3 antagonism and dopamine metabolism in A10 neurons suggest that the kappa agonists can be separated into two groups. This is the first physiological evidence suggestive of kappa opioid receptor subtypes.  相似文献   

14.
The ability of natural and synthetic opioids to modulate the induction of ornithine decarboxylase (ODC) was investigated in immune cells and cardiomyocytes in culture. In particular, Leu-enkephalin, which shows preference for -receptors, enhanced ODC activity in both thymocytes and cardiomyocytes, whereas the effect of U-50488H, a synthetic -selective agonist, was cell-specific. In thymocytes, U-50488H markedly inhibited the induction of the enzyme elicited by the mitogen concanavalin A (Con A) or by a combined treatment with PMA and A23187, and also reduced basal ODC activity. However the drug did not affect ODC induced by other stimuli. The inhibition of the induction of ODC activity was accompanied by a reduction of ODC mRNA level and an acceleration of ODC turnover. The action of U-50488H in thymocytes does not appear to be mediated by or other classical opioid receptors lacking both stereospecificity and antagonist sensitivity, but may involve a pertussis toxin-sensitive G protein. Splenocytes also showed the ODC inhibiting effect of U-50488H, although they were less sensitive compared to thymocytes. In contrast, U-50488H enhanced ODC activity in cardiomyocytes and this effect was blocked by a specific -antagonist. In conclusion, these results indicate that some opioid agonists can modulate ODC expression in non neural cells. In particular, -opioid receptors may be involved in the U-50488H action in cardiomyocytes, and a distinct site, linked to inhibition of cell proliferation, may operate in immune cells.  相似文献   

15.
The present study was designed to investigate the effect of repeated administration of a selective kappa-opioid receptor agonist (1S-trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide hydrochloride [(-)U-50,488H] on antinociception and G-protein activation induced by mu-opioid receptor agonists in mice. A single s.c. injection of (-)U-50,488H produced a dose-dependent antinociception, and this effect was reversed by a selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Furthermore, a single s.c. pre-treatment with (-)U-50,488H had no effect on the mu-opioid receptor agonist-induced antinociception. In contrast, repeated s.c. administration of (-)U-50,488H resulted in the development of tolerance to (-)U-50,488H-induced antinociception. Under these conditions, we demonstrated here that repeated s.c. injection of (-)U-50,488H significantly enhanced the antinociceptive effect of selective mu-opioid receptor agonists endomorphin-1, endomorphin-2 and [d-Ala2,N-MePhe4,Gly-ol5] enkephalin (DAMGO). Using the guanosine-5'-o-(3-[35S]thio) triphosphate ([35S]GTP gamma S) binding assay, we found that (-)U-50,488H was able to produce a nor-BNI-reversible increase in [35S]GTP gamma S binding to membranes of the mouse thalamus, which has a high level of kappa-opioid receptors. Repeated administration of (-)U-50,488H caused a significant reduction in the (-)U-50,488H-stimulated [35S]GTP gamma S binding in this region, whereas chronic treatment with (-)U-50,488H exhibited the increase in the endomorphin-1-, endomorphin-2- and DAMGO-stimulated [35S]GTP gamma S bindings in membranes of the thalamus and periaqueductal gray. These results suggest that repeated stimulation of kappa-opioid receptors leads to the heterologous up-regulation of mu-opioid receptor functions in the thalamus and periaqueductal gray regions, which may be associated with the supersensitivity of mu-opioid receptor-mediated antinociception.  相似文献   

16.
The present study tested the hypothesis that kappa-opioids modulate the arterial baroreflex control of heart rate in conscious young sheep. Various parameters governing the arterial baroreflex control of heart rate were assessed before and after activation of kappa-opiate receptors (KOR) by i.v. administration of the specific KOR agonist U-50488H (experiment 1) or vehicle (experiment 2) to conscious, chronically instrumented lambs aged 42 +/- 2 days (n = 6). The 2 experiments were administered in random order at minimum intervals of 48 h. Thirty min after U-50488H treatment, there was an increase in diastolic and mean arterial pressure and in heart rate, returning to control levels by 90 min. A significant increase in the arterial pressure at the midpoint of the baroreflex range and in the minimum heart rate as well as a significant decrease in the heart rate range over which the arterial baroreflex operates were also seen at 30 min after U-50488H, gradually returning to control levels over 120 min. Vehicle had no effect on any of the parameters governing the arterial baroreflex control of heart rate. These data provide the first direct evidence that under physiological conditions in young lambs, the arterial baroreflex control of heart rate is altered after administration of the specific KOR agonist U-50488H, revealing a previously unidentified role for this opioid receptor.  相似文献   

17.
Central regulatory mechanisms for food intake regulation vary among animals. Evidence from animal studies suggests central opioids and dopamine have prominent role on appetite regulation but their interaction(s) have not been studied in layer-type chicken. Thus, in this study six experiments designed to investigate intracerebroventricular (ICV) administration of SCH23390 (D1 like receptors antagonist), Sulpride (D2 like receptors antagonist), DAMGO (μ-opioid receptors agonist), DPDPE (δ-opioid receptors agonist), U-50488H (κ-opioid receptors agonist) on feeding behavior in 3 h food deprived neonatal layer-type chickens. In experiment 1, chicks ICV injected with control solution, SCH23390 (2.5 nmol), DAMGO (125 pmol) and their combination (SCH23390 + DAMGO). In experiment 2: control solution, SCH23390 (2.5 nmol), DPDPE (δ-opioid receptors agonist, 40 pmol) and SCH23390 + DPDPE were applied to the birds. In experiment 3, injections were control solution, SCH23390 (2.5 nmol), U-50488H (30 nmol) and SCH23390 + U-50488H. In experiments 4–6 were similar to experiments 1–3 except Sulpride (2.5 nmol) applied instead of SCH23390. Then, cumulative food intake was recorded until 120 min after injection. According to the results, ICV injection of DAMGO (125 pmol) significantly decreased food intake but co-injection of DAMGO + SCH23390 diminished DAMGO-induced hypophagia (P < 0.05). Also, SCH23390 was not able to decrease the DPDPE- and U-50488H-induced hyperphagia (P > 0.05). Furthermore, Sulpride had no role on DAMGO, DPDPE and U-50488H-induced food intake (P > 0.05). These results suggest there is an interaction between opioidergic and dopaminergic systems via μ and D1 receptors in appetite regulation in chicken.  相似文献   

18.
TRK-820, a new type of 4,5-epoxymorphinan derivative, was investigated in vivo for antinociceptive activities and its selectivity on various opioid receptors in mice. TRK-820 given s.c. or p.o. was found to be 351- and 796-fold more potent than U50,488H with acetic acid-induced abdominal constriction test. The duration of the antinociceptive effect produced by TRK-820 was longer than that produced by mu-opioid receptor agonist morphine or other kappa-opioid receptor agonists. In addition, with four other antinociceptive assays, low temperature hot plate (51 degrees C), thermal tail flick, mechanical tail pressure and tail pinch tests, TRK-820 was also found to be 68- to 328-fold more potent than U-50488H, and 41- to 349-fold more potent than morphine in producing antinociception, as comparing the weight of the different compound. However, TRK-820 was less active in inhibiting the high temperature (55 degrees C) hot plate response. The antinociceptive effects produced by TRK-820 were inhibited by nor-BNI, but not by naloxone or naltrindole (NTI) with the abdominal constriction test, indicating that the antinociception is selectively mediated by the stimulation of kappa-, but not mu- or delta-opioid receptors. Co-administration of TRK-820 with morphine slightly enhanced the antinociception induced by morphine in the mouse hot plate test. On the other hand, pentazocine significantly reduced the morphine-induced antinociception. TRK-820 produced sedation at doses, which are much higher than the doses for producing antinociception. These results indicate that the potent antinociception induced by TRK-820 is mediated via the stimulation of kappa-, but not mu- or delta-opiod receptors.  相似文献   

19.
[3H]U-69593 is an opiate agonist that has been reported to bind in vitro with high affinity and selectivity to the kappa receptor subtype. The studies reported here were designed to determine the optimal conditions for labeling kappa receptors with [3H]U-69593 and to further characterize the binding site. The effects of temperature and NaCl on [3H]U-69593 binding were of particular interest because previous studies reported that [3H]ethylketocyclazocine ([3H]EKC) and [3H]bremazocine binding to kappa receptors was optimal at 4 degrees C in the presence of NaCl. Those conditions were not found to be optimal for [3H]U-69593 binding. Although the pharmacological specificity and Bmax of [3H]U-69593 binding was similar at room temperature and at 4 degrees C, the binding affinity was approximately three times lower at 4 degrees C than at room temperature. In addition, NaCl had an effect on [3H]U-69593 binding that was opposite that on [3H]EKC binding at 4 degrees C (100 nM DAGO and 100 nM DADLE were included in all [3H]EKC assays to prevent binding to mu and delta receptors), i.e. NaCl decreased, rather than increased, [3H]U-69593 binding at 4 degrees C. These differences between [3H]U-69593 and [3H]EKC binding at 4 degrees C were accentuated by a vast difference in the density of the binding sites [Bmax approximately equal to 12 fmol/mg protein for [3H]U-69593 vs approximately equal to 375 fmol/mg protein for [3H]EKC at 4 degrees C in the presence of NaCl) and suggested that [3H]U-69593 might bind selectively to a kappa receptor subtype. This concept was supported by competition experiments. In particular, the site labeled by [3H]EKC at 4 degrees C was found to be relatively insensitive (compared to [3H]U-69593 and [3H]EKC binding at room temperature) to the kappa agonist U-50488H, a close analog to U-69593. Based on these findings, we propose that [3H]U-69593 (and U-50488H) labels a kappa receptor subtype which differs from that labeled by [3H]EKC at 4 degrees C.  相似文献   

20.
14-beta-Methyl-8-oxacyclorphan (BC-3016) was tested for its ability to depress the electrically evoked contractions of the guinea pig ileum (GPI) and of the mouse vas deferens (MVD) and to compete with the binding of prototype ligands selective for kappa-, mu-, or delta-opioid receptors in membrane preparations of rat brain and guinea pig cerebellum. BC-3016 was a very potent agonist in the GPI and MVD preparations, with ID50 of 0.7 and 31 nM, respectively. The activity of levorphanol, a standard alkaloid related to BC-3016, was much lower in both assays with ID50 values of 44 and 86 nM, respectively. Conversely, the activity of BC-3016 was quite comparable to that of dynorphin-A(1-13) in both preparations. In the GPI assay, a putative kappa-receptor antagonist, MR-2266, was 6.6 and 5.5 times more potent than naloxone in blocking the activity of BC-3016 and dynorphin-A(1-13), respectively. BC-3016 was also very potent in displacing bound [3H]ethylketocyclazocine ([3H]EKC) to membrane preparations of the guinea pig cerebellum, a brain component containing predominantly kappa-opioid receptors (Ki of 0.58 nM). Its potency in the displacement of the bound mu-ligand, 3H-labelled (D-Ala2,MePhe4,Gly-OH5)-enkephalin ([3H]DAGO), to rat brain homogenates was somewhat lower (Ki of 0.8 nM) but still high when compared with its ability to displace the delta-ligand, 3H-labelled (D-Ser2, Thr6)-Leu-enkephalin ([3H]DSLET) to rat brain homogenates (Ki of 4.45 nM). The affinity of BC-3016 for the opioid receptor was 2.1-fold higher than that of U-50488H, a selective kappa-opioid ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号