首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A synthetic peptide substrate for selective assay of protein kinase C.   总被引:24,自引:0,他引:24  
Among various phosphate acceptor proteins and peptides so far tested, a synthetic peptide having the sequence surrounding Ser(8) of myelin basic protein, Gln-Lys-Arg-Pro-Ser(8)-Gln-Arg-Ser-Lys-Tyr-Leu, (MBP4-14), is the most specific and convenient substrate which can be used for selective assay of protein kinase C. This peptide is not phosphorylated by cyclic AMP-dependent protein kinase, casein kinases I and II, Ca2+/calmodulin-dependent protein kinase II, or phosphorylase kinase, and can be routinely used for the assay of protein kinase C with low background in the crude tissue extracts. The Km value is considerably low (7 microM) with a Vmax value of twice as much as that for H1 histone.  相似文献   

3.
Proteases regulate numerous biological processes with a degree of specificity often dictated by the amino acid sequence of the substrate cleavage site. To map protease/substrate interactions, a 722-member library of fluorogenic protease substrates of the general format Ac-Ala-X-X-(Arg/Lys)-coumarin was synthesized (X=all natural amino acids except cysteine) and microarrayed with fluorescent calibration standards in glycerol nanodroplets on glass slides. Specificities of 13 serine proteases (activated protein C, plasma kallikrein, factor VIIa, factor IXabeta, factor XIa and factor alpha XIIa, activated complement C1s, C1r, and D, tryptase, trypsin, subtilisin Carlsberg, and cathepsin G) and 11 papain-like cysteine proteases (cathepsin B, H, K, L, S, and V, rhodesain, papain, chymopapain, ficin, and stem bromelain) were obtained from 103,968 separate microarray fluorogenic reactions (722 substrates x 24 different proteases x 6 replicates). This is the first comprehensive study to report the substrate specificity of rhodesain, a papain-like cysteine protease expressed by Trypanasoma brucei rhodesiense, a parasitic protozoa responsible for causing sleeping sickness. Rhodesain displayed a strong P2 preference for Leu, Val, Phe, and Tyr in both the P1=Lys and Arg libraries. Solution-phase microarrays facilitate protease/substrate specificity profiling in a rapid manner with minimal peptide library or enzyme usage.  相似文献   

4.
Chk2/hCds1, the human homolog of Saccharomyces cerevisiae Rad53p and Schizosaccharomyces pombe Cds1p, plays a critical role in the DNA damage checkpoint pathway. While several in vivo targets of Chk2 have been identified, the other target proteins of Chk2 responsible for multiple functions, such as cell cycle arrest, DNA repair, and apoptosis, remain to be elucidated. We utilized the GST-peptide approach to identify physiological substrates for Chk2. Mutational analyses using GST-linked Cdc25A containing serine 123 revealed that residues at positions -5 and -3 are critical determinants for the recognition of the Chk2 substrate. We determined the general phosphorylation consensus sequence and identified in vitro targets of Chk2 using GST peptides as substrates. The newly identified in vitro target proteins include Abl1, Bub1R, Bub1, Bub3, Psk-H1, Smc3, Plk1, Cdc25B, Dcamkl1, Mre11, Pms1, and Xrcc9.  相似文献   

5.
A peptide containing 2 seryl residues, (1)Leu(2)Ser(3)Tyr(4)Arg(5)Aly(6)Tyr(7)Ser(8)Leu, was chemically synthesized and used as a substrate for phosphorylase kinase and cyclic AMP-dependent protein kinase. The sequence, TryArgGlyTyr, makes up a beta turn in the native protein. Phosphorylase kinase was found to phosphorylate specifically seryl residue2 and protein kinase seryl residue7. Km and Vmax values were obtained and compared with natural substrates. The differences in the specificity of the two enzymes might be explained by a different requirement for organized structure. As a working hypothesis, it is suggested the results could be explained if the two enzymes interacted with seryl residues at different sides of a beta turn.  相似文献   

6.
Synthetic peptide substrates for a tyrosine protein kinase   总被引:10,自引:0,他引:10  
Immunoprecipitates containing the transforming protein of the avian sarcoma virus, Y73, together with its associated tyrosine-specific protein kinase, have an activity which will phosphorylate the synthetic peptide Lys-Leu-Ile-Glu-Asp-Asn-Glu-Tyr-Thr-Ala-Arg at the tyrosine residue. This peptide corresponds to 10 out of 11 amino acids surrounding the phosphorylated tyrosine in both pp60src and P90, the transforming proteins of Rous sarcoma virus and Y73 virus, respectively. The apparent Km for phosphorylation of the peptide was about 5 mM. A second peptide with the sequence Lys-Leu-Ile-Asp-Asn-Glu-Tyr-Thr-ala-Arg differing from the first peptide only by the absence of the glutamic acid 4 residues from the tyrosine was also phosphorylated, but the apparent Km for the reaction was 40 mM. Several sites of tyrosine phosphorylation in viral transforming proteins have been found to have one or more glutamic acids close to the phosphorylated tyrosine on the NH2-terminal side. Taken together with our in vitro phosphorylation studies, this suggests that the primary sequence surrounding target tyrosines may play a role in recognition of substrates by tyrosine protein kinases, and in particular, that glutamic acid residues on the NH2-terminal side may be important.  相似文献   

7.
The assay of acidic peptides as substrates for protein kinases has not been as easy to perform as testing basic peptides or polypeptides. We have developed a simple, rapid, and cost-effective procedure that allows the design and testing of potential peptide substrates without the constraints imposed by the phosphocellulose filter paper method (the need to incorporate positively charged residues into the peptide sequence). The technique combines the chelation of 32Pi by acid molybdate with PEI-cellulose chromatography. In this way the migration of 32P-labeled Pi, ATP, and protein are impeded while phosphopeptide is eluted in 1.5 ml from a 0.25-ml disposable column. In order to validate the assay we used two angiotensin II analogues as peptide substrates for the protein tyrosine kinase pp60c-src. The assay results using the new procedure were compared to those of the phosphocellulose filter paper technique. We also demonstrated the use of this method to test linear and cyclic peptides that could not be assayed with the phosphocellulose paper technique. This assay will aid those who are attempting to determine the substrate specificity of protein kinases.  相似文献   

8.
A real-time fluorogenic kinase assay using myelin basic protein (MBP) as a substrate is reported. MBP is part of a noncovalent complex with a negatively charged, dye-labeled lipopeptide, (N-heptadecanoyl)-K(dye2)-linker-EEIYGEF-amide. The complex is approximately 20 times less fluorescent than the free lipopeptide. The MBP-lipopeptide complex serves as a protein substrate for several Ser/Thr kinases. We infer that the observed fluorescence increase on the addition of kinase and ATP is due to the phosphorylation of MBP, which decreases the affinity of MBP with the negatively charged, dye-labeled lipopeptide. Several protein kinases (protein kinase C βII, mitogen-activated protein kinase [MAPK] Erk1, and MAPK Erk2) were tested with the assay. The assay exhibited a fivefold fluorescence increase over background, provided kinetic values comparable to literature values (apparent KmATP), and produced inhibitor constants comparable to literature values for a typical inhibitor, namely staurosporine.  相似文献   

9.
Protein farnesyltransferase (FTase) catalyzes the post-translational modification of many important cellular proteins, and is a potential anticancer drug target. Crystal structures of the FTase ternary complex illustrate an unusual feature of this enzyme, the fact that the isoprenoid substrate farnesyl diphosphate (FPP) forms part of the binding site for the peptide substrate. This implies that changing the structure of FPP could alter the specificity of the FPP-FTase complex for peptide substrates. We have found that this is the case; a newly synthesized FPP analogue, 3-MeBFPP, is a substrate with three peptide cosubstrates, but is not an effective substrate with a fourth peptide (dansyl-GCKVL). Addition of this analogue also inhibits farnesylation of dansyl-GCKVL by FPP. Surprisingly, the differential substrate abilities of these four peptides with FPP-FTase and 3-MeBFPP-FTase complexes do not correlate with their binding affinities for these isoprenoid-enzyme complexes. The possible mechanistic rationales for this observation, along with its potential utility for the study of protein prenylation, are discussed.  相似文献   

10.
Farnesylation, catalyzed by protein farnesyltransferase (FTase), is an important post-translational modification guiding cellular localization. Recently predictive models for identifying FTase substrates have been reported. Here we evaluate these models through screening of dansylated-GCaaS peptides, which also provides new insights into the protein substrate selectivity of FTase.  相似文献   

11.
The peptide Leu-Asp-Asp-Ser-Lys-Arg-Val-Ala-Lys-Arg-Lys-Leu-Ile-Glu, which corresponds to sequence 124 to 137 of c-erb-A protein, was synthesized and tested as substrate for protein kinase C (PKC). Although a typical recognition sequence for PKC, consisting of a cluster of basic residues, is found on the C-terminus side of serine, its phosphorylation was totally prevented by the presence of the two acidic residues on the amino-terminus side. Three analogs in which aspartyl residues were successively replaced with alanine were studied and the influence of the acidic side chain in modulating phosphorylation by PKC was thus possible to determine. The results show that the presence of a single aspartyl residue located in positions i-1 or i-2 with respect to the phosphorylable residue can almost totally abolish the positive effect of a highly favorable cluster of basic residues. These observations highlight the role of negative substrate specificity determinants in settling the protein substrate profile of protein kinase C.  相似文献   

12.
The synthetic phosphopeptide RRATpVA was found to be the most effective substrate for protein phosphatase 2C (PP2C) so far identified. Replacement of phosphothreonine by phosphoserine decreased activity over 20-fold and a striking preference for phosphothreonine was also observed with two other substrates (RRSTpTpVA and casein) that were phosphorylated on both serine and threonine. Replacement of the C-terminal valine in RRATpVA by proline abolished dephosphorylation, while exchanging the N-terminal alanine by proline had no effect. The preference for phosphothreonine and the effect of proline are similar to protein phosphatase 2A (PP2A). However, the peptide RRREEETpEEEAA, an excellent substrate for PP2A, was not dephosphorylated by PP2C, and substitution of the C-terminal valine in RRATpVA by glutamic acid reduced the rate of dephosphorylation by PP2C over 10-fold, without affecting dephosphorylation by PP2A. Addition of two extra N-terminal arginine residues to RRASpVA increased PP2A catalysed dephosphorylation 4- to 5-fold, without altering dephosphorylation by PP2C. These results represent the first study of the specificity of PP2C using synthetic peptides, and strengthen the view that this approach may lead to the development of more effective and specific substrates for the serine/threonine-specific protein phosphatases.  相似文献   

13.
Optimal assay conditions for analyses of the catalytic subunit activity of the cyclic AMP-dependent protein kinase using a well-defined, commercially available synthetic peptide as the phosphate acceptor are defined. Activity of purified catalytic subunit toward the synthetic peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (PK-1; Kemptide) was 1.5- to 45-fold greater than activity toward other commonly used substrates such as histone fractions, casein, and protamine. The effects of buffer, pH, Mg2+, and protein kinase concentration on activity toward PK-1 were investigated. The optimal assay conditions determined were as follows: 20 mM Hepes or phosphate buffer, pH 7.5, 100 microM PK-1, 100 microM [gamma-32P]ATP, 3 mM MgCl2, 12 mM KCl, and 20-200 ng of catalytic subunit assayed at 30 degrees C. Since PK-1 is the only commercially available, well-defined substrate for this enzyme, adaption of the proposed standard assay conditions for the analyses of purified catalytic subunit activity will permit direct comparison of kinetic parameters and purity of enzyme preparations from multiple preparations.  相似文献   

14.
Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM - a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site prediction tools. In the independent testing, the high sensitivity and specificity of the proposed method demonstrate the predictive effectiveness of the identified substrate motifs and the importance of investigating potential kinases for viral protein phosphorylation sites.  相似文献   

15.
Analogues of the synthetic substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly in which the serine is replaced by other amino acids inhibited the activity of the catalytic subunit of cyclic AMP-dependent protein kinase from beef skeletal muscle (Peak I). All of the analogues were competitive with respect to peptide substrate but apparent Ki values varied depending on the particular amino acid that was substituted for serine. Inhibition was also competitive with respect to mixed histone as determined in experiments utilizing one of the analogues. Acetylation of the terminal amino group of Leu-Arg-Arg-Ala-Ser-Leu-Gly lowered the Km for this substrate from 16 micrometer to 3 micrometer, but a similar modification of the inhibitory analogue Leu-Arg-Arg-Ala-Ala-Leu-Gly resulted in no major change in the Ki value. An amount of inhibitory peptide sufficient to inhibit the cyclic AMP-dependent protein kinase by 90% caused less than 10% inhibition of several cyclic AMP-independent protein kinases indicating a high degree of specificity of inhibition by the peptide analogues. The experiments show that synthetic peptide analogues could be useful in identifying phosphorylation reactions catalyzed by cyclic AMP-dependent protein kinase as distinguished from other protein kinase reactions.  相似文献   

16.
The substrate specificity of the epidermal-growth-factor-stimulated tyrosine protein kinase of A431 cell membranes has been studied using a series of synthetic peptide analogs of the sequence around the phosphorylated tyrosine-419 of pp60src. The nine-residue peptide Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Thr-Ala was phosphorylated on tyrosine with an apparent Km of 0.4 mM and a V of 5.7 nmol X min-1 X mg-1. Synthetic peptide tyrosine phosphorylation was stimulated by epidermal growth factor but not by insulin or relaxin. Extension of the nine-residue peptide to include the basic residues, arginine-412, arginine-422 and lysine-423 led to an increased apparent Km. Substitution of glutamic-418 by leucine also increased the apparent Km. In the model peptide Ile-Xaa-Xaa-Ala-Ala-Tyr-Thr-Ala a lower apparent Km was obtained when Xaa was glutamic rather than aspartic acid. Poly(aspartic acid) and poly(glutamic acid) had only weak effects on peptide tyrosine phosphorylation. The results support the concept that acidic residues and not basic residues are important specificity determinants for the epidermal-growth-factor-stimulated tyrosine protein kinase.  相似文献   

17.
SR proteins constitute a family of splicing factors that play key roles in both constitutive and regulated splicing in metazoan organisms. The proteins are extensively phosphorylated, and kinases capable of phosphorylating them have been identified. However, little is known about how these kinases function, for example, whether they target specific SR proteins or whether the kinases themselves are regulated. Here we describe properties of one such kinase, Clk/Sty, the founding member of the Clk/Sty family of dual-specificity kinases. Clk/Sty is autophosphorylated on both Ser/Thr and Thr residues, and using both direct kinase assays and SR protein-dependent splicing assays, we have analyzed the effects of each type of modification. We find not only that the pattern of phosphorylation on a specific SR protein substrate, ASF/SF2, is modulated by autophosphorylation but also that the ability of Clk/Sty to recognize different SR proteins is influenced by the extent and nature of autophosphorylation. Strikingly, phosphorylation of ASF/SF2 is sensitive to changes in Tyr, but not Ser/Thr, autophosphorylation while that of SC35 displays the opposite pattern. In contrast, phosphorylation of a third SR protein, SRp40, is unaffected by autophosphorylation. We also present biochemical data indicating that as expected for a factor directly involved in splicing control (but in contrast to recent reports), Clk/Sty is found in the nucleus of several different cell types.  相似文献   

18.
The protein substrate specificity of a calmodulin-dependent protein kinase activity from the cytosolic fraction of bovine heart was examined. Prior to the experiments, the kinase activity was purified more than 50-fold with a recovery of greater than 10% of the homogenate activity. Two endogenous protein substrates of molecular weight 57,000 and 73,000 were phosphorylated in these kinase preparations. The kinase preparation was also able to phosphorylate exogenous synapsin, phospholamban, glycogen synthase, MAP-2, myelin basic proteins and κ-casein, but not tubulin, pyruvate kinase, the regulatory subunit of cAMP protein kinase II, myosin light chain or phosphorylase b. High levels of calmodulin were required for activation of the kinase activity toward the 57,000 and 73,000 molecular weight endogenous substrates (K0.5 = 93 +/- 5 nM), glycogen synthase (K0.5 = 127 +/- 10 nM), and κ-casein (K0.5 = 321 +/- 107 nM). The kinase possessed a high affinity for glycogen synthase (half maximal activity at 0.9 +/- 0.4 μM) but a low affinity for κ-casein (21 +/- 2 μM). Sucrose density gradient centrifugation separated the calmodulin-dependent protein kinase activity into two fractions with apparent molecular weights of approximately 900,000 and 100,000. Both fractions phosphorylated the endogenous 57,000 molecular weight substrate and glycogen synthase similarly. These results indicate that cardiac calmodulin-dependent protein kinase previously observed to phosphorylate endogenous protein substrate possesses a wide range of substrate specificity.  相似文献   

19.
Several synthetic peptides reproducing fragments of protamines have been used as model substrates for Ca2+/phospholipid-dependent protein kinase C, tested both in the absence of any effector (basal conditions) and upon activation by either Ca2+ and phosphatidylserine (or diacylglycerol) or limited proteolysis. Only the peptide Arg4-Tyr-Gly-Ser-Arg6-Tyr [Ga(52-65)] shares the unique property of protamines of being readily phosphorylated even under basal conditions. Optimal activity in the absence of effectors is observed with Tris/HCl buffer pH 7.5; Pipes and Hepes are less effective at pH 7.5, and at pH 6.5 basal phosphorylation is reduced. Under the best conditions for basal phosphorylation of Ga(52-65), its derivative with ornithine replaced for arginine and those corresponding to its C-terminal fragments Gly-Ser-Arg6-Tyr [Ga(57-65)] and Gly-Ser-Arg3 [Ga(57-61)], as well as the peptides Pro-Arg5-Ser2-Arg-Pro-Val-Arg [Th(1-12)], Arg4-Tyr-Arg2-Ser-Thr-Val-Ala [Th(13-23)] and Arg2-Leu-Ser2-Leu-Arg-Ala are not significantly affected though all of them, like histones, are more or less readily phosphorylated upon activation of protein kinase C by Ca2+/phosphatidylserine. The peptide Ser2-Arg-Pro-Val-Arg [Th(7-12)] however, corresponding to the C-terminal part of Th(1-12), is not phosphorylated even in the presence of activators. Limited proteolysis can roughly mimic the Ca2+/phosphatidylserine effect inducing however different extents of activation depending on the nature of the peptide substrates. Our results support the following two conclusions. Basal phosphorylation by protein kinase C in the absence of any effector requires peptide substrates whose target residue(s) are included between two extended arginyl blocks and is also dependent on pH and nature of the buffer. Peptides having extended clusters of either arginyl or ornithyl residues on the C-terminal side of serine are also readily phosphorylated, but they need activation of protein kinase by either Ca2+/phosphatidylserine or limited proteolysis. The same is true of peptides having basic residues only on the N-terminal side, or even on both sides but in limited number.  相似文献   

20.
Characterization of synthetic peptide substrates for p34cdc2 protein kinase   总被引:8,自引:0,他引:8  
Synthetic peptide substrates for the cell division cycle regulated protein kinase, p34cdc2, have been developed and characterized. These peptides are based on the sequences of two known substrates of the enzyme, Simian Virus 40 Large T antigen and the human cellular recessive oncogene product, p53. The peptide sequences are H-A-D-A-Q-H-A-T-P-P-K-K-K-R-K-V-E-D-P-K-D-F-OH (T antigen) and H-K-R-A-L-P-N-N-T-S-S-S-P-Q-P-K-K-K-P-L-D-G-E-Y-NH2 (p53), and they have been employed in a rapid assay of phosphorylation in vitro. Both peptides show linear kinetics and an apparent Km of 74 and 120 microM, respectively, for the purified human enzyme. The T antigen peptide is specifically phosphorylated by p34cdc2 and not by seven other protein serine/threonine kinases, chosen because they represent major classes of such enzymes. The peptides have been used in whole cell lysates to detect protein kinase activity, and the cell cycle variation of this activity is comparable to that measured with specific immune and affinity complexes of p34cdc2. In addition, the peptide phosphorylation detected in mitotic cells is depleted by affinity adsorption of p34cdc2 using either antibodies to p34cdc2 or by immobilized p13, a p34cdc2-binding protein. Purification of peptide kinase activity from mitotic HeLa cells yields an enzyme indistinguishable from p34cdc2. These peptides should be useful in the investigation of p34cdc2 protein kinase and their regulation throughout the cell division cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号