首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main cause of mortality after the first year from cardiac transplantation is cardiac allograft vasculopathy (CAV), which leads to chronic rejection of the heart. To improve long-term outcomes in cardiac transplantation, treatments to prevent or diminish CAV are actively being researched. Ischemia-reperfusion (I-R) injury has been shown to be the strongest alloantigen-independent factor in the development of CAV. Here, we investigate the use of metformin in murine cardiac transplantation models as a novel cardioprotective agent to limit acute I-R injury and subsequent chronic rejection. We show that metformin treatment activates AMP-activated kinase (AMPK) in vitro and in vivo. In the acute transplantation model, metformin activation of AMPK resulted in significantly decreased apoptosis in cardiac allografts on postoperative day (POD) 1 and 8. In the chronic transplantation model, metformin pretreatment of allografts led to significantly improved graft function and significantly decreased CAV, as measured on POD 52. Taken together, our results in the acute and chronic rejection studies suggest a potential cardioprotective mechanism for metformin; we demonstrate a correlation between metformin-induced decrease in acute I-R injury and metformin-related decrease in chronic rejection. Thus, one of the ways by which metformin and AMPK activation may protect the transplanted heart from chronic rejection is by decreasing initial I-R injury inherent in donor organ preservation and implantation. Our findings suggest novel therapeutic strategies for minimizing chronic cardiac rejection via the use of metformin- and AMPK-mediated pathways to suppress acute I-R injury.  相似文献   

2.
Jon Kobashigawa 《Trials》2000,1(3):166-6
Coronary artery disease in the transplanted heart, also known as cardiac allograft vasculopathy (CAV), is one of the major causes of mortality late after transplantation. It affects up to 50% of all heart transplant recipients within 5 years of surgery. The mechanisms of CAV are multifactorial and include both immune and nonimmune factors. Ischemia of the graft at the time of transplantation is one of the more important nonimmune factors, because this leads to endothelial cell injury. Immune factors involving cellular and humoral rejection can further insult the vascular endothelial cell, leading to a cascade of immunologic responses. The optimal treatment prophylaxis for CAV has not been established. The treatment approach to this major post-transplant complication includes modification of risk factors through medical therapies and strategies. The early use of diltiazem and/or pravastatin or simvastatin has been demonstrated to be effective in reducing the development of CAV, but does not completely prevent it. There are many ongoing studies involving newer immunosuppressive agents that may hold promise for the future.  相似文献   

3.
Chronic cardiac rejection is represented by cardiac allograft vasculopathy (CAV) and cardiac interstitial fibrosis (CIF) known to cause severe complications. These processes are accompanied by remarkable changes in the cardiac extra cellular matrix (cECM). The aim of our study was to analyse the cECM remodelling in chronic rejection and to elucidate a potential role of ED-A domain containing fibronectin (ED-A(+) Fn), alpha smooth muscle actin (ASMA) and B domain containing tenascin-C (B(+) Tn-C). A model of chronic rejection after heterotopic rat heart transplantation was used. Allografts, recipient and control hearts were subjected to histological assessment of rejection grade, to real-time PCR based analysis of 84 genes of ECM and adhesion molecules and to immunofluorescence labelling procedures, including ED-A(+) Fn, ASMA and B(+) Tn-C antibodies. Histological analysis revealed different grades of chronic rejection. By gene expression analysis, a relevant up-regulation of the majority of ECM genes in association with chronic rejection could be shown. For 8 genes, there was a relevant up-regulation in allografts as well as in the corresponding recipient hearts. Association of ASMA positive cells with the grade of chronic rejection could be proven. In CAV and also in CIF there were extensive co-depositions of ED-A(+) Fn, ASMA and B(+) Tn-C. In conclusion, chronic cardiac allograft rejection is associated with a cECM remodelling. ASMA protein deposition in CAV, and CIF is a valuable marker to detect chronic rejection. Interactions of VSMCs and Fibro-/Myofibroblasts with ED-A(+) Fn and B(+) Tn-C might functionally contribute to the development of chronic cardiac rejection.  相似文献   

4.
Chronic allograft rejection, which is manifested as chronic allograft vasculopathy (CAV), continues to refrain the long-term success of small bowel transplantation (SBTx). The pathway mediated by the receptor for advanced glycation end products (RAGE) and its ligand, high mobility group box-1 (HMGB1), may contribute to the pathogenesis of CAV, given that they were involved in the process of allograft rejection. n-3 polyunsaturated fatty acids (PUFAs), which have been discovered to attenuate CAV, may have potential impacts on this pathway. The present study investigated whether n-3 PUFAs attenuated CAV via the regulation of the HMGB1-RAGE pathway in a chronic rejection model of rat SBTx. We revealed that the expression of HMGB1 and RAGE was increased in CAV-bearing vessels as well as endothelial cells isolated from these vessels. Oral administration of fish oil with high levels of n-3 PUFAs following SBTx significantly reduced the HMGB1 and RAGE expression, which coincided with the amelioration of CAV. In contrast, feeding of corn oil that contained low levels of n-3 PUFAs had no favorable effects on CAV development and failed to decrease the HMGB1 and RAGE expression. These results indicate that protective effects of n-3 PUFAs on allograft vessels exist via down-regulation of the HMGB1-RAGE pathway.  相似文献   

5.
CXCR3 chemokines exert potent biological effects on both immune and vascular cells. The dual targets suggest their important roles in cardiac allograft vasculopathy (CAV) and rejection. Therefore, we investigated expression of IFN-inducible protein 10 (IP-10), IFN-inducible T cell alpha chemoattractant (I-TAC), monokine induced by IFN (Mig), and their receptor CXCR3 in consecutive endomyocardial biopsies (n = 133) from human cardiac allografts and corresponding normal donor hearts (n = 11) before transplantation. Allografts, but not normal hearts, contained IP-10, Mig, and I-TAC mRNA. Persistent elevation of IP-10 and I-TAC was associated with CAV. Allografts with CAV had an IP-10-GAPDH ratio 3.7 +/- 0.8 compared with 0.8 +/- 0.2 in those without CAV (p = 0.004). Similarly, I-TAC mRNA levels were persistently elevated in allografts with CAV (6.7 +/- 1.9 in allografts with vs 1.5 +/- 0.3 in those without CAV, p = 0.01). In contrast, Mig mRNA was induced only during rejection (2.4 +/- 0.9 with vs 0.6 +/- 0.2 without rejection, p = 0.015). In addition, IP-10 mRNA increased above baseline during rejection (4.1 +/- 2.3 in rejecting vs 1.8 +/- 1.2 in nonrejecting biopsies, p = 0.038). I-TAC did not defer significantly with rejection. CXCR3 mRNA persistently elevated after cardiac transplantation. Double immunohistochemistry revealed differential cellular distribution of CXCR3 chemokines. Intragraft vascular cells expressed high levels of IP-10 and I-TAC, while Mig localized predominantly in infiltrating macrophages. CXCR3 was localized in vascular and infiltrating cells. CXCR3 chemokines are induced in cardiac allografts and differentially associated with CAV and rejection. Differential cellular distribution of these chemokines in allografts indicates their central roles in multiple pathways involving CAV and rejection. This chemokine pathway may serve as a monitor and target for novel therapies to prevent CAV and rejection.  相似文献   

6.
Progressive arterial stenosis (cardiac allograft vasculopathy (CAV)) is a leading cause of long-term failure of organ transplants. CAV remains intractable, in part because its mechanisms are insufficiently understood. A central proposition is that MHC-driven alloimmune processes play a necessary role in CAV, as shown by the absolute requirement for histoincompatibility between donor and recipient for its production. Two immunological pathways have been implicated involving reactivity to donor MHC Ags by either T or B cells. In this study, we use a novel system of semiallogeneic cardiac transplants between parental donors and F1 hybrid recipients to provide evidence that NK cells, members of the innate immune system, also contribute to the generation of CAV in mice. This finding marks the first demonstration that the hybrid resistance phenomenon occurs in solid organ allografts. Extension of these experiments to recipients deficient in T cells demonstrates that this third pathway of CAV, the NK cell-triggered pathway, involves the recruitment of T cells not responsive to donor alloantigens. Finally, transplants performed with donors or recipients deficient in IFN-gamma revealed that recipient-derived IFN-gamma is necessary for CAV formation in parental to F1 transplants, suggesting a possible effector mechanism by which NK cells can promote CAV. Together, these results define a previously unknown pathway toward CAV and assign a novel role to NK cells in organ allograft rejection.  相似文献   

7.
Chronic allograft vasculopathy (CAV) contributes to heart transplant failure, yet its pathogenesis is incompletely understood. Although cellular and humoral alloimmunity are accepted pathogenic mediators, animal models suggest that T cells and Abs reactive to graft-expressed autoantigens, including cardiac myosin (CM), could participate. To test the relationship between CAV and anti-CM autoimmunity in humans, we performed a cross-sectional study of 72 heart transplant recipients: 40 with CAV and 32 without. Sera from 65% of patients with CAV contained anti-CM Abs, whereas <10% contained Abs to other autoantigens (p < 0.05), and only 18% contained anti-HLA Abs (p < 0.05 versus anti-CM). In contrast, 13% of sera from patients without CAV contained anti-CM Abs (p < 0.05; odds ratio [OR], associating CAV with anti-CM Ab = 13, 95% confidence interval [CI] 3.79-44.6). Multivariable analysis confirmed the association to be independent of time posttransplant and the presence of anti-HLA Abs (OR = 28, 95% CI 5.77-133.56). PBMCs from patients with CAV responded more frequently to, and to a broader array of, CM-derived peptides than those without CAV (p = 0.01). Detection of either CM-peptide-reactive T cells or anti-CM Abs was highly and independently indicative of CAV (OR = 45, 95% CI 4.04-500.69). Our data suggest detection of anti-CM immunity could be used as a biomarker for outcome in heart transplantation recipients and support the need for further studies to assess whether anti-CM immunity is a pathogenic mediator of CAV.  相似文献   

8.
The inability to reproducibly induce robust and durable transplant tolerance using CD28-B7 pathway blockade is in part related to the persistence of alloreactive effector/memory CD8(+) T cells that are less dependent on this pathway for their cellular activation. We studied the role of the novel T cell costimulatory pathway, CD27-CD70, in alloimmunity in the presence and absence of CD28-B7 signaling. CD70 blockade prolonged survival of fully mismatched vascularized cardiac allografts in wild-type murine recipients, and in CD28-deficient mice induced long-term survival while significantly preventing the development of chronic allograft vasculopathy. CD70 blockade had little effect on CD4(+) T cell function but prevented CD8(+) T cell-mediated rejection, inhibited the proliferation and activation of effector CD8(+) T cells, and diminished the expansion of effector and memory CD8(+) T cells in vivo. Thus, the CD27-CD70 pathway is critical for CD28-independent effector/memory CD8(+) alloreactive T cell activation in vivo. These novel findings have important implications for the development of transplantation tolerance-inducing strategies in primates and humans, in which CD8(+) T cell depletion is currently mandatory.  相似文献   

9.
The role of Class I major histocompatibility (MHC) antigens in the induction of specific suppression of graft rejection has been investigated. Two experimental transplantation models have been used - fully vascularized heterotopic cardiac allografts in the mouse and fully vascularized orthotopic renal allografts in the rat. Preparations of cells expressing Class I MHC antigens, for example highly purified preparations of rat erythrocytes or platelets or mouse L cells (H2k) transfected with the D locus Class I gene of the b haplotype, LDb-1 cells, were used to pretreat recipients prior to transplantation. The function of the allograft was monitored in order to assess any beneficial effects induced by Class I MHC antigens. The results obtained implicate Class I MHC as important in the induction of specific immunosuppression of vascularized allograft rejection.  相似文献   

10.
A heterotopic subcutaneous model for experimental vascularized bone allograft transplantation has been presented. This model uses genetically defined rats and allows serial assessment of graft viability. The reliability of this model has been proven by successful isograft transplantation. This model was used to study the effect of matching at the major histocompatibility complex on vascularized bone allograft survival. Whereas grafts transplanted across a minor histocompatibility barrier survived until sacrifice, grafts transplanted across a major histocompatibility barrier were victims of an acute rejection process. This study, therefore, showed genetic disparity to be a critical determinant of vascularized bone allograft survival. It indicates that primary vascularized bone allografts are as susceptible to rejection as heart and kidney allografts. For these reasons, it can be anticipated that genetic matching will be important in clinical vascularized bone allograft transplantation. The model used in this study should be useful for obtaining further fundamental immunologic information concerning vascularized bone allograft transplantation.  相似文献   

11.
Research models of chronic rejection are essential to investigate pathobiological and pathophysiological processes during the development of transplant vasculopathy (TVP).The commonly used animal model for cardiovascular chronic rejection studies is the heterotopic heart transplant model performed in laboratory rodents. This model is used widely in experiments since Ono and Lindsey (3) published their technique. To analyze the findings in the blood vessels, the heart has to be sectioned and all vessels have to be measured.Another method to investigate chronic rejection in cardiovascular questionings is the aortic transplant model (1, 2). In the orthotopic aortic transplant model, the aorta can easily be histologically evaluated (2). The PVG-to-ACI model is especially useful for CAV studies, since acute vascular rejection is not a major confounding factor and Cyclosporin A (CsA) treatment does not prevent the development of CAV, similar to what we find in the clinical setting (4). A7-day period of CsA is required in this model to prevent acute rejection and to achieve long-term survival with the development of TVP.This model can also be used to investigate acute cellular rejection and media necrosis in xenogeneic models (5).Download video file.(51M, mov)  相似文献   

12.
13.
CD8 T cell cross-priming, an established mechanism of protective antiviral immunity, was originally discovered during studies involving minor transplantation Ags. It is unclear whether or how cross-primed CD8 T cells, reactive to donor-derived, but recipient class I MHC-restricted epitopes, could injure a fully MHC-disparate, vascularized transplant. To address this question we studied host class I MHC-restricted, male transplantation Ag-reactive T cell responses in female recipients of fully MHC-disparate, male heart transplants. Cross-priming to the immune-dominant determinant HYUtyp occurred at low frequency after heart transplantation. CD8 T cell preactivation through immunization with HYUtyp mixed in CFA did not alter the kinetics of acute rejection. Furthermore, neither HYUtyp immunization nor adoptive transfer of HYUtyp-specific TCR-transgenic T cells affected outcome in 1) a model of chronic rejection in the absence of immunosuppression or 2) a model of allograft acceptance induced by costimulatory blockade. The results support the contention that CD8 T cells reactive to host-restricted, but donor-derived, Ags are highly specific and are nonpathogenic bystanders during rejection of MHC-disparate cardiac allografts.  相似文献   

14.
This laboratory has used a composite tissue allograft model as a vehicle for studies on a new type of bone marrow transplant, the vascularized bone marrow transplant. The model consists of a rat hind limb transplant that incorporates integumentary musculoskeletal, and lymphopoietic tissues. These transplants, in comparison with conventional marrow transplants, have the advantage of providing a syngeneic microenvironment and immediate engraftment of both mature and progenitor hemopoietic cells at the time of transplantation. The characteristics of graft-versus-host disease were studied in this model. Lewis X Brown Norway F1 (LBN RT-1(1+n)) rats received hind limbs from Lewis (LEW RT-1(1)) donors (n = 19). Animals were observed daily for signs of graft-versus-host disease. Necropsies were performed. A minority of animals developed lethal disease (7 of 19 recipients) and demonstrated cachexia with concomitant histopathologic changes of the disease. Acute and chronic groups emerged with distinct clinical courses, which are similar to other models of this disease. Recipients of vascularized bone marrow transplants (limb transplants) showed clinical and histopathologic changes of the disease. The transplants may be used as a model of graft-versus-host disease in humans. Most interestingly, the transplant has a lower incidence of disease compared with other methods of bone marrow transplantation and represents an alternative to conventional bone marrow transplantation, which deserves further exploration. It may be possible to develop a new technique for bone marrow transplantation based on this surgical approach. It is proposed that the transfer of vascularized blocks of bone/marrow into prospective recipients as opposed to cellular bone marrow transplants may be preferable.  相似文献   

15.
The Notch signaling pathway has been recently shown to contribute to T cell differentiation in vitro. However, the in vivo function of Notch signaling in transplantation remains unknown. In this study, we investigated the importance of Delta1 in regulating the alloimmune response in vivo. Delta1 expression was upregulated on dendritic cells and monocytes/macrophages upon transplantation in a BALB/c into B6 vascularized cardiac transplant model. Whereas administration of anti-Delta1 mAb only slightly delayed survival of cardiac allografts in this fully MHC-mismatched model, it significantly prolonged graft survival in combination with single-dose CTLA4-Ig or in CD28 knockout recipients. The prolongation of allograft survival was associated with Th2 polarization and a decrease in Th1 and granzyme B-producing cytotoxic T cells. The survival benefit of Delta1 blockade was abrogated after IL-4 neutralization and in STAT6KO recipients, but was maintained in STAT4KO recipients, reinforcing the key role of Th2 cell development in its graft-prolonging effects. To our knowledge, these data demonstrate for the first time an important role of Delta1 in alloimmunity, identifying Delta1 ligand as a potential novel target for immunomodulation in transplantation.  相似文献   

16.
Induction of allograft tolerance in the absence of Fas-mediated apoptosis.   总被引:5,自引:0,他引:5  
Using certain immunosuppressive regimens, IL-2 knockout (KO) mice, in contrast to wild-type (wt) controls, are resistant to the induction of allograft tolerance. The mechanism by which IL-2 regulates allograft tolerance is uncertain. As IL-2 KO mice have a profound defect in Fas-mediated apoptosis, we hypothesized that Fas-mediated apoptosis of alloreactive T cells may be critical in the acquisition of allograft tolerance. To definitively study the role of Fas in the induction of transplantation tolerance, we used Fas mutant B6.MRL-lpr mice as allograft recipients of islet and vascularized cardiac transplants. Alloantigen-stimulated proliferation and apoptosis of Fas-deficient cells were also studied in vivo. Fas mutant B6.MRL-lpr (H-2b) mice rapidly rejected fully MHC-mismatched DBA/2 (H-2d) islet allografts and vascularized cardiac allografts with a tempo that is comparable to wt control mice. Both wt and B6.MRL-lpr mice transplanted with fully MHC-mismatched islet allografts or cardiac allografts can be readily tolerized by either rapamycin or combined costimulation blockade (CTLA-4Ig plus anti-CD40L mAb). Despite the profound defect of Fas-mediated apoptosis, Fas-deficient T cells can still undergo apoptotic cell death in vivo in response to alloantigen stimulation. Our study suggests that: 1) Fas is not necessarily essential for allograft tolerance, and 2) Fas-mediated apoptosis is not central to the IL-2-dependent mechanism governing the acquisition of allograft tolerance.  相似文献   

17.
《Bioscience Hypotheses》2008,1(3):165-167
Heart transplantation still remains the best choice of treatment for many kinds of end-stage heart diseases, but the side-effects of immunosuppressive agents and cardiac allograft vasculopathy (CAV) remain the main two obstacles in improving the long outcome of cardiac allografts. Mesenchymal stem cells (MSCs) are nonhematopoietic pluripotent cells that retain the ability to undergo differentiation into cells of different lineages. What's more, MSCs have been demonstrated to exert many profound inhibitory effects on many lymphocytic subpopulations such as T cells, regulatory T cells, and dendritic cells in vitro. In vivo studies also suggested that MSCs could be used to attenuate immune-mediated disorders such as transplant rejection and autoimmune diseases including rheumatoid arthritis, multiple sclerosis and GVHD. Hepatocyte growth factor (HGF) is a pleiotropic factor that plays an important role in protecting infarcted myocardial by its antiapoptotic, antifibrotic and angiogenic effects. And also it was suggested that the administration of HGF could effectively suppress acute and chronic cardiac allograft rejection. We based our hypothesis on that HGF-modified MSCs would engraft stably in recipient and interact with important immune cells such as T cells, B cells and dendritic cells, then stable immune tolerance be induced possibly by both immunomodulation of MSCs and cardioprotective and immunomodulative effects of HGF. Further work is necessary to highlight the specific underlying mechanisms.  相似文献   

18.
BackgroundThe incidence of heart failure is anticipated to rise by 2030, resulting in more than 8 million adults with this condition in US. Despite the advancement in pharmacological and surgical treatments, some patients progress to severe forms of cardiac dysfunction requiring cardiac transplantation as a last-resort treatment. Cardiac assist devices play an essential role in the recovery of normal cardiac performance through reversible remodeling or in assisting the weak organ to prolong survival rate. However, these devices need to be monitored carefully, as prolonged use may lead to physiological maladaptation and further cardiac complications. The optimization of such devices has done through the development and use of numerical simulations that allow the analysis of in-vivo hemodynamic patterns of blood flow. This study aims to investigate the performance of a model of extra-aortic assist device surrounding the descending aorta through three-dimensional patient-specific modeling.MethodsA three-dimensional model of the aorta was constructed from patient-specific cardiac CT images of a 60-year-old male diagnosed with left ventricular failure at the Tehran Heart Center (THC). Numerical simulation was conducted for two complete cardiac cycles using fluid-structure interaction (FSI) analysis under the assumption that the balloon and the aortic vessel behave as linear elastic materials, and that blood is a Newtonian and incompressible fluid.ResultsThe numerical simulation demonstrated a high correlation between the FSI analysis and clinical data of the patient-specific anatomical and physiological conditions. Blood velocity, pressure, deformation, and strain contours were simulated and analyzed through three-dimensional modeling. Compared to the unassisted aorta, the device provided an increase in blood flow displacement of an additional 15 ml of blood in the descending aorta, brachiocephalic, carotid, and subclavian arteries. The maximum von Mises stress distribution across the aortic vessel was higher than the stress imposed on the system in the unassisted heart, with values of 3.3 MPa and 0.28 MPa, respectively. Numerical investigation of structural responses revealed that no remarkable force was exerted on the aortic valve by the device at the descending aorta.ConclusionWe present the numerical investigation of a counterpulsation device around the descending aorta that has not previously been tested on human or animal models. While this extra-aortic balloon pump (EABP) did not show a significant improvement in coronary perfusion, there is room for improvement in further studies to optimize the geometry of the balloon. Additional investigations are required to determine the efficacy of this device and its safety before in-vivo experimental studies are pursued. This simulation has clinical relevance when choosing an appropriate cardiac assist device to address patient-specific physiological and pathological conditions.  相似文献   

19.
Although effective in the short-term, clinical solid-organ transplantation has not achieved its goals as a long-term treatment for patients with end-stage organ failure. Development of so-called chronic transplant dysfunction (CTD)is now recognised as the predominant cause of allograft loss long-term (after the first post-operative year) following transplantation. CTD has the remarkable histological feature that the luminal areas of intragraft arteries become obliterated, predominantly with vascular smooth muscle cells intermingled with some inflammatory cells. The development of this transplant vasculopathy,referred to as transplant arteriosclerosis (TA), is a multifactorial process and many risk factors have been identified. However, the precise pathogenetic mechanisms leading to TA are largely unknown and, as a result, current prevention and treatment protocols are inadequate. This review discusses the risk factors for TA and current views on the pathogenetic mechanisms leading to this vasculopathy. We argue here that host-derived cells contribute to the development of these vascular lesions, and propose that TA results from a normal vascular repair process that proceeds beyond the needs of functional repair. Guided by the proposed sequence of events, we finally discuss possible directions for future intervention strategies to prevent TA after solid-organ transplantation.  相似文献   

20.
Grafts can be rejected even when matched for MHC because of differences in the minor histocompatibility Ags (mH-Ags). H4- and H60-derived epitopes are known as immunodominant mH-Ags in H2(b)-compatible BALB.B to C57BL/6 transplantation settings. Although multiple explanations have been provided to explain immunodominance of Ags, the role of vascularization of the graft is yet to be determined. In this study, we used heart (vascularized) and skin (nonvascularized) transplantations to determine the role of primary vascularization of the graft. A higher IFN-γ response toward H60 peptide occurs in heart recipients. In contrast, a higher IFN-γ response was generated against H4 peptide in skin transplant recipients. Peptide-loaded tetramer staining revealed a distinct antigenic hierarchy between heart and skin transplantation: H60-specific CD8(+) T cells were the most abundant after heart transplantation, whereas H4-specific CD8(+) T cells were more abundant after skin graft. Neither the tissue-specific distribution of mH-Ags nor the draining lymph node-derived dendritic cells correlated with the observed immunodominance. Interestingly, non-primarily vascularized cardiac allografts mimicked skin grafts in the observed immunodominance, and H60 immunodominance was observed in primarily vascularized skin grafts. However, T cell depletion from the BALB.B donor prior to cardiac allograft induces H4 immunodominance in vascularized cardiac allograft. Collectively, our data suggest that immediate transmigration of donor T cells via primary vascularization is responsible for the immunodominance of H60 mH-Ag in organ and tissue transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号