首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
High-throughput gene analysis would benefit from new approaches for delivering DNA or RNA into cells. Here we describe a simple system that allows any molecular biology laboratory to carry out multiple, parallel cell transfections on microscope coverslip arrays. By using magnetically defined positions and PCR product-coated paramagnetic beads, we achieved transfection in a variety of cell lines. Beads may be added to the cells at any time, allowing both spatial and temporal control of transfection. Because the beads may be coated with more than one gene construct, the method can be used to achieve cotransfection within single cells. Furthermore, PCR-generated mutants may be conveniently screened, bypassing cloning and plasmid purification steps. We illustrated the applicability of the method by screening combinatorial peptide libraries, fused to GFP, to identify previously unknown cellular localization motifs. In this way, we identified several localizing peptides, including structured localization signals based around the scaffold of a single C2H2 zinc finger.  相似文献   

2.
Plasmid electroporation, or its optimized version nucleofection, is an important technique for gene transfection of cells in suspension. However, substantial cell death and/or low transfection efficiency are still common for some cell lines. By using enhanced green fluorescent protein (EGFP) as a reporter, we compared the use of PCR amplified EGFP (PaEGFP) and its parental plasmid (pEGFP-N2) for nucleofection in Kasumi-1 cells. We found that PaEGFP induced significantly lower cell death but had similar transfection efficiency compared to its parent plasmid (pEGFP-N2). Most importantly, contrary to the pEGFP-N2-nucleofected cells, the PaEGFP-nucleofected cells subsequently grew properly. Tests in other cell lines also implied that PaEGFP indeed induced consistently less cell death, but transfection efficiencies varied, being good in suspension cell lines but lower in adhesive cell lines. We suggest that direct transfection with PCR amplified genes can be a simple and useful approach for optimization of electropulse-based transfection not only of Kasumi-1 cells, but also may be useful for other cell lines that are difficult to transfect in suspension.

Electronic supplementary material

The online version of this article (doi:10.1007/s10616-013-9683-y) contains supplementary material, which is available to authorized users.  相似文献   

3.
A simple method for spontaneous transfection into mammalian cells (both adherent and suspension in culture) with plasmid DNA is described. This method does not require any specific DNA carrier or technical device and can be applied for obtaining both transient and stably transfected cells. The efficiency of spontaneous transfection is slightly lower in comparison with that of the conventional calcium phosphate and lipofectin transfection methods and does not depend on the type of cell culture used.  相似文献   

4.
To enter the realm of human gene therapy, a novel drug delivery system is required for efficient delivery of small molecules with high safety for clinical usage. We have developed a unique vector "HVJ-E (hemagglutinating virus of Japan-envelope)" that can rapidly transfer plasmid DNA, oligonucleotide, and protein into cells by cell-fusion. In this study, we associated HVJ-E with magnetic nanoparticles, which can potentially enhance its transfection efficiency in the presence of a magnetic force. Magnetic nanoparticles, such as maghemite, with an average size of 29 nm, can be regulated by a magnetic force and basically consist of oxidized Fe which is commonly used as a supplement for the treatment of anemia. A mixture of magnetite particles with protamine sulfate, which gives a cationic surface charge on the maghemite particles, significantly enhanced the transfection efficiency in an in vitro cell culture system based on HVJ-E technology, resulting in a reduction in the required titer of HVJ. Addition of magnetic nanoparticles would enhance the association of HVJ-E with the cell membrane with a magnetic force. However, maghemite particles surface-coated with heparin, but not protamine sulfate, enhanced the transfection efficiency in the analysis of direct injection into the mouse liver in an in vivo model. The size and surface chemistry of magnetic particles could be tailored accordingly to meet specific demands of physical and biological characteristics. Overall, magnetic nanoparticles with different surface modifications can enhance HVJ-E-based gene transfer by modification of the size or charge, which could potentially help to overcome fundamental limitations to gene therapy in vivo.  相似文献   

5.
The aim of this research was to elaborate fast and sensitive method ofdetection of E. coli O157:H7 in food samples. Raw ground meat obtained from retail was artificially inoculated with low numbers of E. coli O157:H7. 18 h enrichment culture allowed pathogenic bacteria to multiply to the levels detectable in multiplex PCR. Immunomagnetic separation with magnetic beads coated with an antibody against E. coli O157:H7 were used to concentrate target bacteria and to separate PCR inhibitors. A portion of the bacterial suspension was used in a multiplex PCR to amplify eae (attaching and effacing) gene, stx (shiga toxin) genes and 90 kbp plasmid. The sensitivity of E. coli O157:H7 detection method was shown to be 1 cfu per 25 g of food sample. The total analysis can be completed within 24 h, whilst traditional methods involves enrichment, direct plating and confirmation tests with entire time at least 3 days.  相似文献   

6.
In this paper we describe a rapid method for the direct generation of DNA sequencing templates from phage or bacteria. Sequencing of these PCR products can be performed by radioactive and fluorescent methods. The non-radioactive method has been used to sequence a total of approximately 100 kb of human DNA fragments generated by digestion with HpaII and subsequent cloning. The method depends on direct small scale amplification using a biotinylated primer, and the binding of the product to streptavidin coated magnetic beads. All the procedures are carried out in a microtitre plate thus facilitating the handling of large numbers of clones and has potential for automation.  相似文献   

7.
Pasupathy K  Lin S  Hu Q  Luo H  Ke PC 《Biotechnology journal》2008,3(8):1078-1082
Plant gene delivery is challenging due to the presence of plant cell walls. Conventional means such as Agrobacterium infection, biolistic particle bombardment, electroporation, or polyethylene glycol attachment are often characterized by high cost, labor extensiveness, and a significant perturbation to the growth of cells. We have succeeded in delivering GFP-encoding plasmid DNA to turfgrass cells using poly(amidoamine) dendrimers. Our new scheme utilizes the physiochemical properties as well as the nanosize of the poly(amidoamine) dendrimer for direct and noninvasive gene delivery. The GFP gene was expressed in the plant cells as observed by confocal fluorescence microscopy. The transfection efficiency may be further improved by optimizing the pH of the cell culture medium and the molar ratio of the dendrimer to DNA. The use of the current delivery system can be extended to virtually all plant species having successful regeneration systems in place.  相似文献   

8.
Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings.  相似文献   

9.
This protocol details how to design and conduct experiments to deliver nucleic acids to adherent and suspension cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of nucleic acids and cationic lipids or polymers (nonviral gene vectors), which are associated with magnetic (nano) particles. These magnetic complexes are sedimented onto the surface of the cells to be transfected within minutes by the application of a magnetic gradient field. As the diffusion barrier to nucleic acid delivery is overcome, the full vector dose is targeted to the cell surface and transfection is synchronized. In this manner, the transfection process is accelerated and transfection efficiencies can be improved up to several 1,000-fold compared with transfections carried out with nonmagnetic gene vectors. This protocol describes how to accomplish the following stages: synthesis of magnetic nanoparticles for magnetofection; testing the association of DNA with the magnetic components of the transfection complex; preparation of magnetic lipoplexes and polyplexes; magnetofection; and data processing. The synthesis and characterization of magnetic nanoparticles can be accomplished within 3-5 d. Cell culture and transfection is then estimated to take 3 d. Transfected gene expression analysis, cell viability assays and calibration will probably take a few hours. This protocol can be used for cells that are difficult to transfect, such as primary cells, and may also be applied to viral nucleic acid delivery. With only minor alterations, this protocol can also be useful for magnetic cell labeling for cell tracking studies and, as it is, will be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized transfection efficiency in any cell type.  相似文献   

10.
Transient gene expression in mammalian cells is a valuable alternative to stable cell lines for the rapid production of large amounts of recombinant proteins. While the establishment of stable cell lines takes 2-6 months, milligram amounts of protein can be obtained within a week following transfection. The polycation polyethylenimine (PEI) is one of the most utilized reagents for small- to large-scale transfections as it is simple to use and, when combined with optimized expression vectors and cell lines, provides high transfection efficiency and titers. As with most transfection reagents, PEI-mediated transfection involves the formation of nanoparticles (polyplexes) which are obtained by its mixing with plasmid DNA. A short incubation period that allows polyplexes to reach their optimal size is performed prior to their addition to the culture. As the quality of polyplexes directly impacts transfection efficiency and productivity, their formation complicates scalability and automation of the process, especially when performed in large-scale bioreactors or small-scale high-throughput formats. To avoid variations in transfection efficiency and productivity that arise from polyplexes formation step, we have optimized the conditions for their creation directly in the culture by the consecutive addition of DNA and PEI. This simplified approach is directly transferable from suspension cultures grown in 6-well plates to shaker flasks and 5-L WAVE bioreactors. As it minimizes the number of steps and does not require an incubation period for polyplex formation, it is also suitable for automation using static cultures in 96-well plates. This "direct" transfection method thus provides a robust platform for both high-throughput expression and large-scale production of recombinant proteins.  相似文献   

11.
The bioluminescence system (luciferase reporter assay system) is widely used to study gene expression, signal transduction and other cellular activities. Although transfection of reporter plasmid DNA to mammalian cell lines is an indispensable experimental step, the transfection efficiency of DNA varies among cell lines, and several cell lines are not suitable for this type of assay because of the low transfection efficiency. In this study, we confirm the transfection efficiency of reporter DNA to several cancer and normal cell lines after transient transfection by single‐cell imaging. Luminescence images could be obtained from living single cells after transient transfection, and the calculated transfection efficiency of this method was similar to that of the conventional reporter assay using a luminometer. We attempted to measure the activity of the Bip promoter under endoplasmic reticulum stress conditions using both high and low transfection efficiency cells for plasmid DNA at the single‐cell level, and observed activation of this promoter even in cells with the lowest transfection efficiency. These results show that bioluminescence imaging of single cells is a powerful tool for the analysis of gene expression based on a reporter assay using limited samples such as clinical specimens or cells from primary culture, and could provide additional information compared with the conventional assay. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The generation of novel Mycobacterium avium subsp. paratuberculosis (MAP)-specific monoclonal antibodies and phage-display derived peptide binders, along with their application for the magnetic separation (MS) of MAP cells, is described. Our aim was to achieve even greater MAP capture capability than is possible with peptide-mediated magnetic separation (PMS) using a 50:50 mix of biotinylated-aMp3 and biotinylated-aMptD peptide-coated beads. Gamma-irradiated whole MAP cells and ethanol extracted antigens (EEA) from these cells were used to elicit an immune response and as phage-display biopanning targets. A range of novel binders was obtained and coated onto paramagnetic beads, both individually and in various combinations, for MS evaluation. IS900 PCR was employed after MS to provide quick results. Capture sensitivity was assessed using a range of MAP concentrations after which the most promising beads were tested for their specificity for MAP, by performing MS followed by culture using 10 other Mycobacterium species. Magnetic beads coated with the biotinylated EEA402 peptide demonstrated a greater level of MAP capture than the current PMS method, even when low numbers of MAP (<10 cfu/ml) were present; however these beads also captured a range of other mycobacteria and so lacked capture specificity. Magnetic beads coated with monoclonal antibodies 6G11 and 15D10 (used as a 50:50 mix or as dually coated beads) also demonstrated improved MAP capture relative to the current PMS method, but with little cross-reactivity to other Mycobacterium spp. Therefore, two new MS protocols are suggested, the application of which would be dependent upon the required endpoint. Biotinylated EEA402-coated beads could potentially be used with a MAP-specific PCR to ensure detection specificity, while beads coated with 6G11 and 15D10 monoclonal antibodies could be used with culture or the phage amplification assay.  相似文献   

13.
The possible emergence of a pandemic influenza virus from the avian influenza virus (AIV) has become a serious threat. The isolation of viruses will be crucial for further virological analysis and the development of vaccines. However, currently, there is no simple method for facilitating the isolation of infectious AIV. Here, we have developed a simple method of capturing AIV using anionic magnetic beads. The method employed the capture of AIV (H5N1, H5N2, and H5N3) from liquid samples such as allantoic fluid (AF) and cell culture medium (CM) using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydride). After their incubation with AIV-containing samples, the magnetic beads were separated from the supernatant by applying a magnetic field. The absorption of AIV on the beads was confirmed by immunochromatography and an enzyme-linked immunosorbent assay, which indicated the presence of hemagglutinin, neuraminidase, and nucleoprotein of AIV. Furthermore, the infectivity in chicken eggs of AIV captured by magnetic beads was similar to that of the starting materials. The capture of AIV using magnetic beads coated with anionic polymers will contribute to the sufficient recovery of infectious AIV and approach for potential pandemic influenza viruses.  相似文献   

14.
Mechanism of cell transfection with plasmid/chitosan complexes   总被引:26,自引:0,他引:26  
Chitosan is useful as a non-viral vector for gene delivery. Although there are several reports supporting the use of chitosan for gene delivery, studies regarding effects on transfection and the chitosan-specific transfection mechanism remain insufficient. In this report, the level of expression with plasmid/chitosan was observed to be no less than that with plasmid/lipofectin complexes in SOJ cells. The transfection mechanism of plasmid/chitosan complexes as well as the relationship between transfection activity and cell uptake was analyzed by using fluorescein isothiocyanate-labeled plasmid and Texas Red-labeled chitosan. In regard to effects on transfection, there were several factors to affect transfection activity and cell uptake, for example: the molecular mass of chitosan, stoichiometry of complex, as well as serum concentration and pH of transfection medium. The level of transfection with plasmid/chitosan complexes was found to be highest when the molecular mass of chitosan was 40 or 84 kDa, ratio of chitosan nitrogen to DNA phosphate (N/P ratio) was 5, and transfection medium contained 10% serum at pH 7.0. We also investigated the transfection mechanism, and found that plasmid/chitosan complexes most likely condense to form large aggregates (5-8 microm), which absorb to the cell surface. After this, plasmid/chitosan complexes are endocytosed, and possibly released from endosomes due to swelling of lysosomal in addition to swelling of plasmid/chitosan complex, causing the endosome to rupture. Finally, complexes were also observed to accumulate in the nucleus using a confocal laser scanning microscope.  相似文献   

15.
We have developed a method for nuclear export signal trapping (NEST) to isolate functional Rev clones from various types of libraries such as libraries of Rev mutants. The expression libraries are cotransfected into COS cells together with a novel Rev-dependent immunoselectable CD28 expression plasmid, pCMV128-CD28. CD28-positive cells are recovered by FACS or by immune precipitation with magnetic beads, and the low-molecular-weight extra chromosomal DNA is recovered, amplified for Rev-containing DNA by PCR and recloned into expression plasmids. The resulting clones are enriched for functional Rev clones. These can be recovered efficiently after several repetitive NEST cycles. This technique may be usefully applied to study various regions of Rev, such as the RNA binding domain and the nuclear export signal, or effector domain and potentially to the isolation of cellular factors with nuclear export capabilities.  相似文献   

16.
韦晔  李科  卢大儒  朱化星 《遗传》2021,(4):362-374
新兴的染色质靶向切割和标签化(clevage under target and tagment,CUT&Tag)技术利用转座酶在目标蛋白结合的DNA附近进行切割并对切割下的DNA片段进行标签化,通过后续的二代测序可以快速鉴定蛋白质-DNA相互作用,极大的简化了染色质免疫共沉淀测序(chromatin immunoprecipitation sequencing,ChIP-seq)的实验过程。CUT&Tag中转座酶完成标签化后需要DNA回收或其他后处理才能进行建库PCR,不同的回收方法对CUT&Tag结果有着显著的影响。通过建立生物素化转座体-链霉亲和素磁珠体系(streptavidin beads recovery CUT&Tag,srCUT&Tag),可以快速便捷地完成CUT&Tag的产物回收。本文在K562细胞中展开H3K4me3、RNA聚合酶Ⅱ(RNA polymeraseⅡ,RNAPⅡ)、转录因子CTCF和HMGA1的CUT&Tag实验,并利用现有的乙醇沉淀、片段分选(solid-phase reversible immobilization,SPRI)磁珠回收和直接PCR法,以及本研究建立的srCUT&Tag方法对产物进行回收。结果表明,从整体上看,SPRI磁珠回收和srCUT&Tag方法着较高的回收效率,而乙醇沉淀法则回收效率低下。在全部4种CUT&Tag产物回收过程中,SPRI磁珠回收均会损失大部分小于150 bp的产物片段。在CTCF和HMGA1 CUT&Tag产物的回收中,直接PCR法则损失了大部分大于300 bp的片段并与其他回收方法的结果有较大的差别。因此,srCUT&Tag能够比其他三种回收方法提供更多更完整的测序信息。综上所述,新建立srCUT&Tag回收方法相比现有的CUT&Tag产物回收方法能提高建库效率并得到更好的数据质量,为表观遗传学研究提供了更好的技术选择。  相似文献   

17.
AIMS: To develop and evaluate a rapid and sensitive PCR method for detection of Campylobacter spp. directly from chicken faeces. METHODS AND RESULTS: DNA was isolated from faecal swabs using magnetic beads followed by PCR using a prealiquoted PCR mixture, which had been stored in the freezer. The result could be obtained in <6 h. The method was evaluated on 1282 samples from the Danish surveillance programme for Campylobacter in broilers by comparing with conventional culture. The diagnostic specificity was calculated to be 0.99. The detection limits of the PCR method and of the conventional culture were compared using spiked control material. For both methods the detection limit was 36 CFU ml-1. CONCLUSIONS: It was concluded that the PCR proved useful for detection of Campylobacter in pooled cloacal swabs from broilers. SIGNIFICANCE AND IMPACT OF THE STUDY: By taking cloacal samples in the broiler flocks the technique can be used as an important tool for planning and directing the broiler slaughtering process. This will be a great help in minimizing the risk of contaminating Campylobacter-free flocks at the abattoir.  相似文献   

18.
In order to establish a simple and scaleable transfection system we have used the cationic polymer polyethylenimine (PEI) to study transient transfection in HEK293 and 293(EBNA) cells grown in serum-free suspension culture. The transfection complexes were made directly within the cell culture by consecutively adding plasmid and PEI (direct method). Alternatively, the DNA-PEI transfection complexes were prepared in fresh medium (1/10 culture volume) and then added to the cells (indirect method). The results of this study clearly show that the ratio of PEI nitrogen to DNA phosphate is very important for high expression levels. The precise ratio is dependent on the DNA concentration. For example, using 1 μg/ml DNA by the indirect method, the ratio of optimal PEI:DNA was about 10–13:1. However, the ratio increases to 33:1 for 0.1–0.2 μg/ml DNA. By testing several different molecular weights of the polycationic polymer we could show that the highest transfection efficiency was obtained with the PEI 25 kDa. Using PEI 25 kDa the indirect method is superior to the direct addition because significantly lower DNA concentrations are needed. The expression levels of the soluble human TNF receptor p55 are even higher at low DNA compared to 1 μg/ml plasmid. The EBV-based pREP vectors gave better transient gene expression when used in 293(EBNA) cells compared to HEK293 cells in suspension culture. No differences in expression levels in the two cell lines were observed when the pC1 (CMV)-TNFR was used. In conclusion, PEI is a low-toxic transfection agent which provides high levels of transient gene expression in 293(EBNA) cells grown in serum-free suspension culture. This system allows highly reproducible, cost-effective production of milligram amounts of recombinant proteins in 2–5 l spinner culture scale within 3–5 days. Fermentor scale experiments, however, are less efficient because the PEI-mediated transient tranfection is inhibited by conditioned medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We have developed a rapid, microplate-format plasmid isolation procedure to purify sequencing-grade DNA templates for high-throughput DNA sequencing operations. A modified lysozyme/boiling method is used to produce a plasmid-containing supernatant that is then purified by iron bead capture. After binding, the beads are pelleted in a magnetic field, washed and the DNA eluted in water. The method yields up to 10 micrograms plasmid DNA from a 1-mL overnight culture in a deep-well microplate. The procedure is suitable for large-scale experiments, amenable to automation and does not require expensive reagents or equipment. The entire protocol can be completed in as little as 2 h, and one technician with a 96-well pipetting station can process up to 48 plates per day. This protocol is ideal for any high-throughput operation in which template quantity, quality and reproducibility are of primary importance.  相似文献   

20.
Butash KA  Natarajan P  Young A  Fox DK 《BioTechniques》2000,29(3):610-4, 616, 618-9
Plasmid DNA purified from bacterial cells can be contaminated with endotoxin to different extents, depending on the purification method. Earlier reports indicate that endotoxin can decrease transfection efficiency in many eukaryotic cell lines; however, the amount of endotoxin required for inhibition is unclear. We determined endotoxin effects in several cell lines and observed that endotoxin levels greater than or equal to 10,000 endotoxin units (EU) were needed to significantly affect cell proliferation and viability; levels greater than 2000 EU/mu g DNA were required to significantly inhibit transfection for all but one (Huh-7) of the cell lines tested. These endotoxin levels are significantly higher than endotoxin contamination in plasmid DNA purified by anion exchange, CsCl2 gradient and endotoxin-free purification technology, but not as high as a crude alkaline lysis preparatory method. Plasmid DNA prepared using anion exchange technology was comparable to endotoxin-free technology in terms of transfection efficiency. Even Huh-7 cells, which are markedly more sensitive to endotoxins, have comparable transfection efficiencies using plasmid DNA purified by either of these two methods. We conclude that for those cell lines commonly used for transfection studies, endotoxin-free, quality DNA is not necessary because significantly higher levels of bacterial endotoxins are required to inhibit either cell proliferation or transfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号