首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide in the absence of oxygen was suggested to react with 5-50 mM glutathione (GSH) over many minutes when [NO*] < [GSH] (N. Hogg et al., FEBS Lett. 382:223-228; 1996). However, Aravindakumar et al. (J. Chem. Soc. Perkin Trans. 2:663-669; 2002) provided data suggesting approximately 200-fold higher reactivity under conditions of [NO*] > [GSH]. To help resolve these differences, the rate of loss of NO* ( approximately 9 microM) in aqueous solutions of GSH (2.5-20 mM) was measured by chemiluminescence. An apparent second-order rate constant of 0.080 +/- 0.008 M(-1) s(-1) at pH 7.4, 37 degrees C, was calculated based on the total [GSH] and "pseudo-first-order" kinetics; thiolate anion was much more reactive than undissociated thiol. These data imply a half-life of approximately 30 min for low concentrations of NO* with 5 mM GSH, 37 degrees C, pH 7.4, in the absence of oxygen. Possible kinetic schemes that can partially explain the divergent literature reports are discussed, notably an equilibrium in the reaction between NO* and GSH. Human breast carcinoma MCF-7 cells were exposed to NO* (initially approximately 18 microM) in alidded six well plate in an anaerobic chamber in vitro; intracellular GSH levels decreased by half in approximately 60 min. Aerobic exposure depletes GSH in cells in vitro much faster because of autoxidation of NO* to NO2*, >10(8) times more reactive toward GSH.  相似文献   

2.
The results of previous inhibitor studies suggest that there is some increase in nitric oxide (NO) production from constitutive NO synthase in early hemorrhage (H), but the magnitude of NO production early after H has not been previously assessed. It is generally believed that only modest production rates are possible from the constitutively expressed NO synthases. To study this, anesthetized male Sprague-Dawley rats were subjected to 90 min of isobaric (40 mmHg) H. During this period of time, the dynamics of accumulation of NO intermediates in the arterial blood was assessed using electron paramagnetic resonance spectroscopy, chemiluminescence, fluorescence imaging, and mass spectrometry. Electron paramagnetic resonance-detectable NO adducts were also measured with spin traps in blood plasma and red blood cells. H led to an increase in the concentration of hemoglobin-NO from 0.9 +/- 0.2 to 4.8 +/- 0.7 microM. This accumulation was attenuated by a nonselective inhibitor of NO synthase, NG-nitro-L-argininemethyl ester (L-NAME), but not by NG-nitro-D-argininemethyl ester (D-NAME) or 1400W. Administration of L-NAME (but not 1400W or D-NAME) during H produced a short-term increase in mean arterial pressure ( approximately 90%). In H, the level of N oxides in red blood cells increased sevenfold. S-nitrosylation of plasma proteins was revealed with "biotin switch" techniques. The results provide compelling evidence that there is brisk production of NO in early H. The results indicate that the initial compensatory response to H is more complicated than previously realized, and it involves an orchestrated balance between intense vasoconstrictor and vasodilatory components.  相似文献   

3.
Sheu FS  Zhu W  Fung PC 《Biophysical journal》2000,78(3):1216-1226
While the biosynthesis of nitric oxide (NO) is well established, one of the key issues that remains to be solved is whether NO participates in the biological responses right after generation through biosynthesis or there is a "secret passage" via which NO itself is trapped, transported, and released to exert its functions. It has been shown that NO reacts with thiol-containing biomolecules (RSH), like cysteine (Cys), glutathione (GSH), etc., to form S-nitrosothiols (RSNOs), which then release nitrogen compounds, including NO. The direct observation of trapping of NO and its release by RSNO has not been well documented, as most of the detection techniques measure the content of NO as well as nitrite and nitrate. Here we use spin-trapping electron paramagnetic resonance (EPR) technique to measure NO content directly in the reaction time course of samples of GSH and Cys ( approximately mM) mixed with NO ( approximately microM) in the presence of metal ion chelator, which pertains to physiological conditions. We demonstrate that NO is readily trapped by these thiols in less than 10 min and approximately 70-90% is released afterward. These data imply that approximately 10-30% of the reaction product of NO does not exist in the free radical form. The NO release versus time curves are slightly pH dependent in the presence of metal ion chelator. Because GSH and Cys exist in high molar concentrations in blood and in mammalian cells, the trapping and release passage of NO by these thiols may provide a mechanism for temporal and spatial sequestration of NO to overcome its concentration gradient-dependent diffusion, so as to exert its multiple biological effects by reacting with various targets through regeneration.  相似文献   

4.
4,5-Diaminofluorescein (DAF-2) and its membrane-permeable derivate DAF-2 diacetate are fluorescent probes that have been developed to perform real-time biological detection of nitric oxide (NO). Their use for intracellular imaging, however, has recently been seriously questioned and data using DAF-2 for extracellular NO detection at low levels, as for example released from endothelial cells, are rare. Here we show that a reliable detection of low levels of NO in biological systems by DAF-2 is possible (a) by using low DAF-2 concentrations (0.1 microM) and (b) by subtracting the DAF-2 auto-fluorescence from the measured total fluorescence. The described method allows easy real-time detection of endothelial NO formation.  相似文献   

5.
The subcellular localization of endothelial nitric-oxide synthase (eNOS) is critical for optimal coupling of extracellular stimulation to nitric oxide production. Because eNOS is activated by Akt-dependent phosphorylation to produce nitric oxide (NO), we determined the subcellular distribution of eNOS phosphorylated on serine 1179 using a variety of methodologies. Based on sucrose gradient fractionation, phosphorylated-eNOS (P-eNOS) was found in both caveolin-1-enriched membranes and intracellular domains. Co-transfection of eNOS with Akt and stimulation of endothelial cells with vascular endothelial growth factor (VEGF) increased the ratio of P-eNOS to total eNOS but did not change the relative intracellular distribution between these domains. The proper localization of eNOS to intracellular membranes was required for agonist-dependent phosphorylation on serine 1179, since VEGF did not increase eNOS phosphorylation in cells transfected with a non-acylated, mistargeted form of eNOS. Confocal imaging of P-eNOS and total eNOS pools demonstrated co-localization in the Golgi region and plasmalemma of transfected cells and native endothelial cells. Finally, VEGF stimulated a large increase in NO localized in both the perinuclear region and the plasma membrane of endothelial cells. Thus, activated, phosphorylated eNOS resides in two cellular compartments and both pools are VEGF-regulated to produce NO.  相似文献   

6.
Nitric oxide (NO) generated by inducible NO synthase (iNOS) contributes critically to inflammatory injury and host defense. While previously thought as a soluble protein, iNOS was recently reported to form aggresomes inside cells. But what causes iNOS aggresome formation is unknown. Here we provide evidence demonstrating that iNOS aggresome formation is mediated by its own product NO. Exposure to inflammatory stimuli (lipopolysaccharide and interferon-γ) induced robust iNOS expression in mouse macrophages. While initially existing as a soluble protein, iNOS progressively formed protein aggregates as a function of time. Aggregated iNOS was inactive. Treating the cells with the NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME) blocked NO production from iNOS without affecting iNOS expression. However, iNOS aggregation in cells was prevented by L-NAME. The preventing effect of NO blockade on iNOS aggresome formation was directly observed in GFP-iNOS-transfected cells by fluorescence imaging. Moreover, iNOS aggresome formation could be recaptured by adding exogenous NO to L-NAME-treated cells. These studies demonstrate that iNOS aggresome formation is caused by NO. The finding that NO induces iNOS aggregation and inactivation suggests aggresome formation as a feedback inhibition mechanism in iNOS regulation.  相似文献   

7.
8.
Our understanding of the molecular mechanisms that direct cell motility, cell division, and cell shaping has benefited from innovations in cell labeling and the ability to resolve intracellular dynamics with multispectral, high-resolution imaging. However, due to difficulties with in vivo cell marking and monitoring, most studies have been restricted to fixed tissue or cells in culture. Here, we report the delivery of multiple (up to four), multicolor fluorescent protein (FP) constructs and four-dimensional (4-D), multispectral time-lapse confocal imaging of cell movements in living chick embryos. Cell cytoskeletal components are fluorescently tagged after microinjection and electroporation of a cocktail of FP constructs into specific regions of chick embryos. We tested 11 different FP constructs in various two-, three-, and four-color combinations using multispectral imaging and linear unmixing to limit the crosstalk between different emission spectra. We monitored intracellular dynamics in individual multicolored migrating cells in vivo and developed a set of advantageous imaging parameters for 4-D time-lapse confocal microscopy. We find that the number of four-color labeled cells in a typical embryo is approximately 10% of the total number of fluorescently labeled cells; this value consistently increases showing that approximately 50% of the total labeled cells have only one-color. We find that multicolored cells are photostable for time-lapses of approximately 2-3 h. Thus, cell labeling with up to four FP color schemes combined with multispectral, 4-D confocal time-lapse imaging offers a powerful tool to simultaneously analyze cellular and molecular dynamics during chick embryogenesis.  相似文献   

9.
The current quantitative study demonstrates that the recruitment of neuronal nitric oxide synthase (nNOS) beneath N-methyl-D-aspartate (NMDA) receptors, via postsynaptic density 95 (PSD-95) proteins significantly enhances nitric oxide (NO) production. Real-time single-cell fluorescence imaging was applied to measure both NO production and Ca(2+) influx in Chinese hamster ovary (CHO) cells expressing recombinant NMDA receptors (NMDA-R), nNOS, and PSD-95. We examined the relationship between the rate of NO production and Ca(2+) influx via NMDA receptors using the NO-reactive fluorescent dye, diaminofluorescein-FM (DAF-FM) and the Ca(2+)-sensitive yellow cameleon 3.1 (YC3.1), conjugated with PSD-95 (PSD-95-YC3.1). The presence of PSD-95 enhanced the rate of NO production by 2.3-fold upon stimulation with 100 microm NMDA in CHO1(+) cells (expressing NMDA-R, nNOS and PSD-95) when compared with CHO1(-) cells (expressing NMDA-R and nNOS lacking PSD-95). The presence of nNOS inhibitor or NMDA-R blocker almost completely suppressed this NMDA-stimulated NO production. The Ca(2+) concentration beneath the NMDA-R, [Ca(2+)](NR), was determined to be 5.4 microm by stimulating CHO2 cells (expressing NMDA-R and PSD-95-YC3.1) with 100 microm NMDA. By completely permealizing CHO1 cells with ionomycin, a general relationship curve of the rate of NO production versus the Ca(2+) concentration around nNOS, [Ca(2+)](NOS), was obtained over the wide range of [Ca(2+)](NOS). This sigmoidal curve had an EC(50) of approximately 1.2 microm of [Ca(2+)](NOS), implying that [Ca(2+)](NR) = 5.4 microm can activate nNOS effectively.  相似文献   

10.
Nitric oxide (NO) appears in the exhaled breath and is elevated in inflammatory diseases. We developed a steady-state mathematical model of the bronchial mucosa for normal small and large airways to understand NO and S-nitrosoglutathione (GSNO) kinetics and transport using data from the existing literature. Our model predicts that mean steady-state NO and GSNO concentrations for large airways (generation 1) are 2.68 nM and 113 pM, respectively, in the epithelial cells and 0.11 nM (approximately 66 ppb) and 507 nM in the mucus. For small airways (generation 15), the mean concentrations of NO and GSNO, respectively, are 0.26 nM and 21 pM in the epithelial cells and 0.02 nM (approximately 12 ppb) and 132 nM in the mucus. The concentrations in the mucus compare favorably to experimentally measured values. We conclude that 1) the majority of free NO in the mucus, and thus exhaled NO, is due to diffusion of free NO from the epithelial cell and 2) the heterogeneous airway contribution to exhaled NO is due to heterogeneous airway geometries, such as epithelium and mucus thickness.  相似文献   

11.
T Oida  Y Sako    A Kusumi 《Biophysical journal》1993,64(3):676-685
A new method of fluorescence microscopy for cell imaging has been developed that takes advantage of the spatial variations of fluorescence lifetimes in single cells as a source of image contrast, and thus it is named "fluorescence lifetime imaging microscopy (flimscopy)". Since time-resolved fluorescence measurements are sensitive to molecular dynamics and interactions, flimscopy allows the molecular information to be visualized in single cells. In flimscopy measurements, several (nanosecond) time-resolved fluorescence images of a sample are obtained at various delay times after pulsed laser excitation of the microscope's entire field of view. Lifetimes are calculated pixel-by-pixel from these time-resolved images, and the spatial variations of the lifetimes are then displayed in a pseudocolor format (flimscopy image). The total data acquisition time needed to obtain a flimscopy image with the diffraction-limited spatial resolution (approximately 250 nm) is decreased to just approximately 30 s for approximately 300 fluorescent molecules/micron2. This was achieved by developing a high-frequency (400 kHz) nanosecond-gating (9 ns full width at half height)-signal accumulation system. This technique allows the extent of resonance energy transfer to be visualized in single living cells, and is free from the errors due to variations in path length, light scattering, and the number of fluorophores that necessitate complex corrections in steady-state microfluorometry and fluorescence ratio imaging microscopy. Flimscopy was applied here to observe the extent of fusion of individual endosomes in single cells. Results revealed the occurrence of extensive fusion between primary endocytic vesicles and/or sorting endosomes, thereby raising the possibility that the biogenesis of sorting endosomes involves multiple fusions of primary endocytic vesicles.  相似文献   

12.
Nitric oxide (NO) plays important physiological roles in the body. Knowledge regarding the kinetics of NO catabolism is important for understanding the biological functions of NO. Clark-type NO electrodes have been frequently employed in measuring the kinetics of NO reactions; however, the slow response time of these electrodes can cause measurement errors and limit the application of the electrode in measurements of fast NO reactions. In this study, a simplified diffusion model is given for describing the response process of the NO electrode to the change of NO concentration. The least-square method is used in fitting the currents calculated from the diffusion equation to the experimental curves for determining the diffusion parameters and rate constants. The calculated currents are in excellent accordance with the experimental curves for different NO reaction kinetics. It has been demonstrated that when using an NO electrode with a response time of approximately 6 s to measure fast NO reactions with a half-life of approximately 1s, the response currents of the electrode have large differences compared to the curve of actual NO concentration in the solution; however, the rate constant of NO decay can still be accurately determined by computer simulations with the simplified diffusion model. Theoretical analysis shows that an NO electrode with a response time of 6 s (D/L2=0.06 s-1) and the lowest detection limit of 1 nM NO can be used in measuring kinetics of extremely rapid NO reactions with a half-life below 10 ms.  相似文献   

13.
Nitric oxide (NO) fluxes released from the surface of individual activated macrophages or cells localized in small aggregates were measured with a novel polarographic self-referencing microsensor. NO fluxes could be detected at distances from the cells of 100-500 microm. The initial flux and the distance from the cells at which NO could be detected were directly related to the number of cells in the immediate vicinity of the probe releasing NO. Thus, whereas NO fluxes of approximately 1 pmol. cm(-2). s(-1) were measured from individual macrophages, aggregates composed of groups of cells varying in number from 18 to 48 cells produced NO fluxes of between approximately 4 and 10 pmol. cm(-2). s(-1). NO fluxes required the presence of L-arginine. Signals were significantly reduced by the addition of hemoglobin and by N-nitro-L-arginine methyl ester. NO fluxes were greatest when the sensor was placed immediately adjacent to cell membranes and declined as the distance from the cell increased. The NO signal was markedly reduced in the presence of the protein albumin but not by either oxidized or reduced glutathione. A reduction in the NO signal was also noted after the addition of lipid micelles to the culture medium. These results demonstrate that NO can be detected at significant distances from the cell of origin. In addition, both proteins and lipids strongly influence the net movement of free NO from macrophages. This suggests that these tissue components play an important role in regulating the biological activity of NO.  相似文献   

14.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O(2), H(2)S, NO(2)(-), NO(3)(-), NH(4)(+), and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 10(9) to 10(10) cells per cm(3) of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 10(8) to 10(9) cells per cm(3)). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 microm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S(0)) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 microm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

15.
The transformation of nitrogen compounds in lake and estuarine sediments incubated in the dark was analyzed in a continuous-flowthrough system. The inflowing water contained NO(3), and by determination of the isotopic composition of the N(2), NO(3), and NH(4) pools in the outflowing water, it was possible to quantify the following reactions: total NO(3) uptake, denitrification based on NO(3) from the overlying water, nitrification, coupled nitrification-denitrification, and N mineralization. In sediment cores from both lake and estuarine environments, benthic microphytes assimilated NO(3) and NH(4) for a period of 25 to 60 h after darkening. Under steady-state conditions in the dark, denitrification of NO(3) originating from the overlying water accounted for 91 to 171 mumol m h in the lake sediments and for 131 to 182 mumol m h in the estuarine sediments, corresponding to approximately 100% of the total NO(3) uptake for both sediments. It seems that high NO(3) uptake by benthic microphytes in the initial dark period may have been misinterpreted in earlier investigations as dissimilatory reduction to ammonium. The rates of coupled nitrification-denitrification within the sediments contributed to 10% of the total denitrification at steady state in the dark, and total nitrification was only twice as high as the coupled process.  相似文献   

16.
Steady-state gradients of NO within tissues and cells are controlled by rates of NO synthesis, diffusion, and decomposition. Mammalian cells and tissues actively decompose NO. Of several cell lines examined, the human colon CaCo-2 cell produces the most robust NO consumption activity. Cellular NO metabolism is mostly O2-dependent, produces near stoichiometric NO3-, and is inhibited by the heme poisons CN-, CO (K(I) approximately 3 microM), phenylhydrazine, and NO and the flavoenzyme inhibitor diphenylene iodonium. NO consumption is saturable by O2 and NO and shows apparent K(M) values for O2 and NO of 17 and 0.2 microM, respectively. Mitochondrial respiration, O2*-, and H2O2 are neither sufficient nor necessary for O2-dependent NO metabolism by cells. The existence of an efficient mammalian heme and flavin-dependent NO dioxygenase is suggested. NO dioxygenation protects the NO-sensitive aconitases, cytochrome c oxidase, and cellular respiration from inhibition, and may serve a dual function in cells by limiting NO toxicity and by spatially coupling NO and O2 gradients.  相似文献   

17.
4,5 diaminofluorescein (DAF-2) is increasingly utilized as a fluorescent detector for nitric oxide (*NO) in cells and tissues. In oxygenated solutions, reactive nitrogen species derived from (*) NO autoxidation nitrosate DAF-2 to yield the highly fluorescent DAF-2 triazole. In the present study, we investigated the nitrosation of DAF-2 at a neutral pH by absorption and fluorescence spectroscopy using NONOates as chemical sources of (*) NO. We found that both chemically synthesized peroxynitrite and horseradish peroxidase in the presence of hydrogen peroxide (H(2)O(2)) oxidized DAF-2 to a relatively stable nonfluorescent intermediate (t(1/2) approximately 90 s). Oxidation of DAF-2 prior to the addition of the z.rad;NO donor DEA/NO resulted in an increase in fluorescence that was approximately 7-fold higher than treatment with DEA/NO alone. The increase in DAF-2 triazole formation upon oxidation of DAF-2 was confirmed by high performance liquid chromatography. Peroxynitrite generated in situ from the equimolar production of (*) NO and superoxide (O(2)(*-)) also increased the yields of DAF-2 triazole formation, which was completely inhibited when O(2)(*-) was in excess of (*) NO. We propose that DAF-2 is oxidized to a free radical intermediate that directly reacts with (*) NO, thereby bypassing the requirement for (*)NO autoxidation for the formation of DAF-2 triazole. Our findings indicate that DAF-2 fluorometric assays are quantitatively difficult to interpret in cells and in solution when oxidants and (*) NO are co-generated.  相似文献   

18.
A procedure is described for the phagocytic labeling of white blood cells (WBC) with high specific activity 99mTc-albumin colloid (TAC). The preparation contains approximately equal activities of granulocytes and monocytes. Heparinized whole blood (40 cm3) yields a preparation containing a total of 148–222 MBq (4–6 mCi) TAC-WBC including about 20% free TAC. The complete preparation time is 75 min. Imaging is completed 30 min to 4 h post administration of the TAC-WBC. Quality control methods and imaging protocols are described.  相似文献   

19.
Nitric oxide (NO) is a key regulatory molecule with wide vascular, cellular, and metabolic effects. Insulin affects NO synthesis in vitro. No data exist on the acute effect of insulin on NO kinetics in vivo. By employing a precursor-product tracer method in humans, we have directly estimated the acute effect of insulin on intravascular NO(x) (i.e., the NO oxidation products) fractional (FSR) and absolute (ASR) synthesis rates in vivo. Nine healthy male volunteers were infused iv with L-[(15)N(2)-guanidino]arginine ([(15)N(2)]arginine) for 6 h. Timed measurements of (15)NO(x) and [(15)N(2)]arginine enrichments in whole blood were performed in the first 3 h in the fasting state and then following a 3-h euglycemic-hyperinsulinemic clamp (with plasma insulin raised to approximately 1,000 pmol/l). In the last 60 min of each experimental period, at approximately steady-state arginine enrichment, a linear increase of (15)NO(x) enrichment (mean r = 0.9) was detected in both experimental periods. In the fasting state, NO(x) FSR was 27.4 +/- 4.3%/day, whereas ASR was 0.97 +/- 0.36 mmol/day, accounting for 0.69 +/- 0.27% of arginine flux. Following hyperinsulinemia, both FSR and ASR of NO(x) increased (FSR by approximately 50%, to 42.4 +/- 6.7%/day, P < 0.005; ASR by approximately 25%, to 1.22 +/- 0.41 mmol/day, P = 0.002), despite a approximately 20-30% decrease of arginine flux and concentration. The fraction of arginine flux used for NO(x) synthesis was doubled, to 1.13 +/- 0.35% (P < 0.003). In conclusion, whole body NO(x) synthesis can be directly measured over a short observation time with stable isotope methods in humans. Insulin acutely stimulates NO(x) synthesis from arginine.  相似文献   

20.
Transport of L-arginine and nitric oxide formation in human platelets.   总被引:3,自引:0,他引:3  
The results of the present study show that human platelets take up l-arginine by two transport systems which are compatible with the systems y+ and y+L. These Na+independent transporters have been distinguished by treating platelets with N-ethylmaleimide that blocks selectively system y+. System y+, that accounts for 30-40% of the total transport, is characterized by low affinity for l-arginine, is unaffected by l-leucine, is sensitive to changes of membrane potential and to trans-stimulation. The other component of l-arginine transport identified with the system y+L (approximately 60-70% of the total flux) shows high affinity for l-arginine, is insensitive to N-ethylmaleimide treatment, unaffected by changes in membrane potential, sensitive to trans-stimulation and inhibited by l-leucine in the presence of Na+. Moreover a strict correlation between l-arginine transport and nitric oxide (NO) production in whole cells was found. N-ethylmaleimide and l-leucine decreased NO production as well as cGMP elevation, and the effect on NO and cGMP were closely related. It is likely that the l-arginine transport systems y+ and y+L are both involved in supplying substrate for NO production and regulation in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号